P7914 [CSP-S 2021] 括号序列 题解

状态定义

定义 d p [ l ] [ r ] [ f l a g ] dp[l][r][flag] dp[l][r][flag] 为区间 [ l , r ] [l,r] [l,r] 中符合以下条件的方法数:

  1. flag = 0 表示左右两端为匹配括号的形式: ( a n y ) (any) (any)
  2. flag = 1 表示左端为1-k个星号的形式: ∗ . . ∗ ( a n y ) ∗..∗(any) ..(any)
  3. flag = 2 表示右端为1-k个星号的形式: ( a n y ) ∗ . . ∗ (any)∗..∗ (any)..

则所求答案为 d p [ 0 ] [ n − 1 ] [ 0 ] dp[0][n−1][0] dp[0][n1][0]

状态转移方程

1. flag = 0时, 枚举左边第1个合法的超级括号序列

d p [ l ] [ r ] [ 0 ] = c o u n t ( l , r ) + ∑ i = l + 1 r − 1 c o u n t ( l , i ) ∗ ( d p [ i + 1 ] [ r ] [ 0 ] + d p [ i + 1 ] [ r ] [ 1 ] ) dp[l][r][0]=count(l,r)+\sum_{i=l+1}^{r-1}count(l,i)*(dp[i+1][r][0]+dp[i+1][r][1]) dp[l][r][0]=count(l,r)+i=l+1r1count(l,i)(dp[i+1][r][0]+dp[i+1][r][1])

c o u n t ( l , r ) = c o u n t c a s e 1 ( l , r ) + ∑ i = 0 3 d p [ l + 1 ] [ r − 1 ] [ i ] count(l,r)=count_{case1}(l,r)+\sum_{i=0}^{3}dp[l+1][r-1][i] count(l,r)=countcase1(l,r)+i=03dp[l+1][r1][i]

其中要求

  • s [ l ] s[l] s[l] = ‘(’ 或 ‘?’

  • s [ i ] s[i] s[i] = ‘)’ 或 ‘?’

  • s [ r ] s[r] s[r] = ‘)’ 或 ‘?’

  • s [ l . . i ] s[l..i] s[l..i]为第1个有如下形式的合法括号序列 ( ) , ( ∗ . . ∗ ) , ( ( a n y ) ) , ( ∗ . . ∗ ( a n y ) ) , ( ( a n y ) ∗ . . ∗ ) (), (∗..∗), ((any)), (∗..∗(any)), ((any)∗..∗) (),(..),((any)),(..(any)),((any)..)

  • c o u n t ( l , r ) count(l,r) count(l,r) 统计如下形式 ( ) , ( ∗ . . ∗ ) , ( ( a n y ) ) , ( ∗ . . ∗ ( a n y ) ) , ( ( a n y ) ∗ . . ∗ ) (), (∗..∗), ((any)), (∗..∗(any)), ((any)∗..∗) (),(..),((any)),(..(any)),((any)..) 的合法串数量

  • c o u n t c a s e 1 ( l , r ) = 1 count_{case1}(l, r) = 1 countcase1(l,r)=1 当且仅当 s [ l , r ] s[l, r] s[l,r] 形如 ( ) () () ( ∗ ∗ ∗ ) (∗∗∗) ()

这一步时间复杂度为 O ( k N 2 ) O(kN^2) O(kN2)

2. flag = 1时

d p [ l ] [ r ] [ 1 ] = ∑ i = 1 k d p [ l + i ] [ r ] [ 0 ] dp[l][r][1]=\sum_{i=1}^{k}dp[l+i][r][0] dp[l][r][1]=i=1kdp[l+i][r][0]

其中要求

  • s [ l + i ] = s[l+i]= s[l+i]= ‘(’ 或 ‘?’

  • s [ r ] = s[r]= s[r]= ‘)’ 或 ‘?’

  • s [ l , l + i − 1 ] s[l, l+i-1] s[l,l+i1] 中每个字符 = = = ‘*’ 或 ‘?’

这一步时间复杂度为 O ( k N 2 ) O(kN^2) O(kN2)

3. flag = 2时

d p [ l ] [ r ] [ 2 ] = ∑ i = 1 k d p [ l ] [ r − i ] [ 0 ] dp[l][r][2]=\sum_{i=1}^{k}dp[l][r-i][0] dp[l][r][2]=i=1kdp[l][ri][0]

其中要求

  • s [ l ] = s[l] = s[l]= ‘(’ 或 ‘?’

  • s [ r − i ] = s[r-i] = s[ri]= ‘)’ 或 ‘?’

  • s [ r − i + 1 , r ] s[r-i+1, r] s[ri+1,r] 中每个字符 = = = ‘*’ 或 ‘?’

这一步时间复杂度为 O ( k N 2 ) O(kN^2) O(kN2)

总的时间复杂度为 O ( k N 2 ) O(kN^2) O(kN2)
AC code:
#include <bits/stdc++.h>
#define CLEAR(a,val) memset(a, val, sizeof (a))
using ll = long long;
using namespace std;
const ll MOD = 1e9 + 7;
const int MAXN = 501;
int mem[MAXN][MAXN][3];
int mem_case1[MAXN][MAXN];

int main() {
    CLEAR(mem, -1);
    CLEAR(mem_case1, -1);
    int n, k; cin >> n >> k;
    string s; cin >> s;
    // can s[i] turn into c
    auto check = [&s](int i, char c)->bool {
        return s[i] == c || s[i] == '?';
    };

    // trivial case
    auto count_case1 = [&](int l, int r) -> int {
        if (!check(l, '(')) return 0;
        if (!check(r, ')')) return 0;
        if (r - l - 1 > k) return 0;
        if (mem_case1[l][r] != -1) { return mem_case1[l][r]; }
        for(int i = l + 1; i <= r - 1; ++i) {
            if (!check(i, '*')) return mem_case1[l][r] = 0;
        }
        return mem_case1[l][r] = 1;
    };

    function<ll(int, int, int)> dp = [&](int l, int r, int flag) -> ll {
        if (r - l <= 0) return 0;
        if (mem[l][r][flag] != -1) { return mem[l][r][flag]; }
        ll ans = 0;
        if (flag == 0) { // format (~)
            if (!check(l, '(') || !check(r, ')')) {
                return mem[l][r][flag] = 0;
            }
            // () = count(l, r)
            ans = (ans + count_case1(l, r)) % MOD;
            for(int i = 0; i < 3; ++i) {
                ans = (ans + dp(l + 1, r - 1, i)) % MOD;
            }
            // ()any = range dp
            for(int i = l + 1; i <= r - 1; ++i) {
                if (check(i, ')')) {
                    ll cnt_left = count_case1(l, i) + dp(l + 1, i - 1, 0) + dp(l + 1, i - 1, 1) + dp(l + 1, i - 1, 2);
                    ll cnt_right = dp(i + 1, r, 0) + dp(i + 1, r, 1);
                    cnt_left %= MOD;
                    cnt_right %= MOD;
                    ans = (ans + cnt_left * cnt_right % MOD) % MOD;
                }
            }
        }
        else if (flag == 1 && check(r, ')')) { // format ***()
            for(int i = 1; i <= k; ++i) {
                int at = l + i - 1;
                if (at + 1 >= r) { break; }
                if (!check(at, '*')) { break; }
                if (check(at + 1, '(')) {
                    ans = (ans + dp(at + 1, r, 0)) % MOD;
                }
            }
        }
        else if (flag == 2 && check(l, '(')) { // format ()***
            for(int i = 1; i <= k; ++i) {
                int at = r - i + 1;
                if (at - 1 <= l) { break; }
                if (!check(at, '*')) { break; }
                if (check(at - 1, ')')) {
                    ans = (ans + dp(l, at - 1, 0)) % MOD;
                }
            }
        }
        return mem[l][r][flag] = int(ans % MOD);
    };
    cout << dp(0, n - 1, 0) << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值