fft模板

求多项式乘法

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+10,M=1<<20;
const double PI=acos(-1);
struct Complex
{
    double x,y;
    Complex operator+ (const Complex &t) const
    {
        return {x+t.x,y+t.y};
    }
    Complex operator- (const Complex &t) const 
    {
        return {x-t.x,y-t.y};
    }
    Complex operator* (const Complex &t) const
    {
        return {x*t.x-y*t.y,x*t.y+y*t.x};
    }
}a[M],b[M];
int rev[M],bit,tot,num[M];
void fft(Complex a[],int inv)
{
    for(int i=0;i<tot;i++)
        if(i<rev[i]) swap(a[i],a[rev[i]]);
    for(int mid=1;mid<tot;mid<<=1)
    {
        Complex w1=Complex({cos(PI/mid),inv*sin(PI/mid)});
        for(int i=0;i<tot;i+=mid*2)
        {
            Complex wk=Complex({1,0});
            for(int j=0;j<mid;j++,wk=wk*w1)
            {
                Complex x=a[i+j],y=wk*a[i+j+mid];
                a[i+j]=x+y,a[i+j+mid]=x-y;
            }
        }
    }
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++) scanf("%lf",&a[i]);
    for(int i=0;i<=m;i++) scanf("%lf",&b[i]);
    while((1<<bit)<2*N+1) bit++;
    tot=1<<bit;
    for(int i=0;i<tot;i++)
        rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
    fft(a,1),fft(b,1);  //正着做得到点表示法 
    for(int i=0;i<tot;i++) a[i]=a[i]*b[i];
    fft(a,-1);  //倒着做得到系数 
    for(int i=0;i<=n+m;i++)
		printf("%d",(int)(a[i].x/tot+0.5));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值