傅里叶变换的意义
为什么我们要用正弦曲线来代替原来的曲线呢?
用正余弦来表示原信号会更加简单,因为正余弦拥有其他信号所不具备的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的,且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
傅立叶变换的物理意义在哪里?
傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。当然这是从数学的角度去看傅立叶变换。
所以,最前面的时域信号在经过傅立叶变换的分解之后,变为了不同正弦波信号的叠加,我们再去分析这些正弦波的频率,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
傅立叶变换提供给我们这种换一个角度看问题的工具,看问题的角度不同了,问题也许就迎刃而解!
FFT原理
计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,我们要讨论的FFT也只不过是DFT的一种快速的算法。
DFT的运算过程是这样的:
可见,在计算机上进行的DFT,使用的输入值是数字示波器经过ADC后采集到的采样值,也就是时域的信号值,输入采样点的数量决定了转换的计算规模。变换后的频谱输出包含同样数量的采样点,但是其中有一半的值是冗余的,通常不会显示在频谱中,所以真正有用的信息是N/2+1个点。
FFT的过程大大简化了在计算机中进行DFT的过程,简单来说,如果原来计算DFT的复杂度是NN次运算(N代表输入采样点的数量),进行FFT的运算复杂度是Nlg10(N),因此,计算一个1,000采样点的DFT,使用FFT算法只需要计算3,000次,而常规的DFT算法需要计算1,000,000次!
典型的时域2分裂算法图示如下:
具体原理可以找一本数字信号处理的书籍来看。
频谱泄露:
所谓频谱泄露,就是信号频谱中各谱线之间相互干扰,使测量的结果偏离实际值,同时在真实谱线的两侧的其它频率点上出现一些幅值较小的假谱。产生频谱泄露的主要原因是采样频率和原始信号频率不同步,造成周期的采样信号的相位在始端和终端不连续。简单来说就是因为计算机的FFT运算能力有限,只能处理有限点数的FFT,所以在截取时域的周期信号时,没有能够截取整数倍的周期。信号分析时不可能取无限大的样本。只要有截断不同步就会有泄露。
避免频谱泄露的方法除了尽量使采集速率与信号频率同步之外,还可以采用适当的窗函数。
C++代码实现
只是参考大佬封装的代码雏形,后期优化地方很多,仅供参考
My_FFT.h
#pragma once
#include <cmath>
#include <vector>
#define pi 3.1415926
using namespace std;
struct My_Complex {
double real;
double imag; //a:real b:Imagine
};
class My_FFT {
public:
My_FFT();
~My_FFT();
vector<My_Complex> FFT(vector<double>& res);
//返回对应频率和幅值
vector<pair<double, double>> abs_FFT();
//复数求和
My_Complex comp_plus(My_Complex u, My_Complex v);
//复数相乘
My_Complex comp_times(My_Complex u, My_Complex v);
//复数相减
My_Complex comp_minus(My_Complex u, My_Complex v);
//序数重排
void rev();
My_Complex Wn(double A, double B);
void fft1(int l, int r, int len);
public:
int N; //Num of Sample Nodes
double fs=512; //Sample frequency
vector<My_Complex> x, u, W;
double f0;
};
My_FFT::My_FFT() {
}
<