算法提高 最小字符串
最小字符串
题意:给出n个字符串进行串联要求最后结果字典序最小。
思路:贪心排序。对于字符串a和b,如果a+b小于b+a,那么字符串a一定在b前面。
代码:
#include<bits/stdc++.h>
#define rep(i,l,r) for(ll i=l;i<=r;i++)
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;
const ll mx = 1e5+10;
string s[mx];
ll n;
bool cmp(string a, string b){
return a+b<b+a;
}
void solve(){
std::ios::sync_with_stdio(false);
ll T;
cin>>T;
rep(t,1,T){
cin>>n;
rep(i,1,n)cin>>s[i];
sort(s+1, s+1+n, cmp);
rep(i,1,n)cout<<s[i];
cout<<endl;
}
}
int main(){
solve();
return 0;
}
算法提高 Cat And Mouse
Cat And Mouse
模拟
代码:
#include<bits/stdc++.h>
#define rep(i,l,r) for(ll i=l;i<=r;i++)
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;
const ll mx = 10+5;
char s[mx][mx]={
{"*...*....."},
{"......*..."},
{"...*...*.."},
{".........."},
{"...*......"},
{"*.....*..."},
{"...*......"},
{".........*"},
{"...*.*...."},
{".*.*......"}
};
struct node{
ll x, y, ori;//x是列 y是行
node(){
}
node(ll x, ll y, ll ori):x(x), y(y), ori(ori){
}
};
void move(node &c){
if(c.ori==1){//up
if(c.y==0 || s[c.y-1][c.x]=='*')c.ori=2;
else c.y--;
}
else if(c.ori==2){//right
if(c.x==9 || s[c.y][c.x+1]=='*')c.ori=3;
else c.x++;
}
else if(c.ori==3){//down
if(c.y==9 || s[c.y+1][c.x]=='*')c.ori=4;
else c.y++;
}
else{//ori==4 left
if(c.x==0 || s[c.y][c.x-1]=='*') c.ori=1;
else c.x--;
}
}
void solve(){
node cat=node(5,4,1);
node mouse=node(2,7,1);
ll time=0;
while(1){
// printf("curr time:%lld\n", time);
// printf("cat:(%lld,%lld,%lld) --- ", cat.x, cat.y, cat.ori);
// printf("mouse:(%lld,%lld,%lld)\n", mouse.x, mouse.y, mouse.ori);
if(cat.x==mouse.x && cat.y==mouse.y){
printf("%lld\n", time);
break;
}
time++;
move(cat);
move(mouse);
}
}
int main(){
solve();
return 0;
}
算法提高 搬运冰块
搬运冰块
题意:N箱冰块,第i个冰块需要t[i]时间搬运,融化速度为d[i]。(冰块搬运时不会融化!)求最少的融合量。
思路:贪心排序。对于冰块a和b,如果a.tb.d<b.ta.d,说明先搬运a更划算。
代码:
#include<bits/stdc++.h>
#define rep(i,l,r) for(ll i=l;i<=r;i++)
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;
const ll mx = 1e5+5;
ll N;
struct node{
ll t, d;//t[i]-4e6 d[i]-1e2
}nos[mx];
bool cmp(node a, node b){
return a.t*b.d<b.t*a.d;
}
void solve(){
scanf("%lld", &N);
rep(i,1,N)scanf("%lld %lld", &nos[i].t, &nos[i].d);
sort(nos+1, nos+1+N, cmp);
ll ans=0, ct=0;
rep(i,1,N){
ans+=ct*nos[i].d;
ct+=nos[i].t;
}
printf("%lld\n", ans);
}
int main(){
solve();
return 0;
}
算法提高 秘密行动
秘密行动
题意:n层楼,每层楼楼高a[i]。小D有跳跃一层或者两次的能力,耗时为0,可以无限次数使用。但是该能力不能连续使用。如果爬楼梯,爬1高度耗时为1。求到顶层的最少时间。
思路:DP。
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示在到j层且状态为i的最少时间。i为0或者1,0表示接下来不可以跳,1表示可以跳。对于
d
p
[
1
]
dp[1]
dp[1]来说,它的上一次一定是爬楼梯,但是上一次的状态既可以是0也可以是1,所以转移方程为
d
p
[
1
]
[
j
]
=
m
i
n
(
d
p
[
1
]
[
j
−
1
]
+
a
[
j
]
,
d
p
[
0
]
[
j
−
1
]
+
a
[
j
]
)
dp[1][j]=min(dp[1][j-1]+a[j],dp[0][j-1]+a[j])
dp[1][j]=min(dp[1][j−1]+a[j],dp[0][j−1]+a[j])。对于
d
p
[
0
]
dp[0]
dp[0]来说,它的上一次一定是跳跃,所以转移方程为
d
p
[
0
]
[
j
]
=
m
i
n
(
d
p
[
1
]
[
j
−
1
]
,
d
p
[
1
]
[
j
−
2
]
)
dp[0][j]=min(dp[1][j-1],dp[1][j-2])
dp[0][j]=min(dp[1][j−1],dp[1][j−2]),注意需要判断是否存在j-2层。
代码:
#include<bits/stdc++.h>
#define rep(i,l,r) for(ll i=l;i<=r;i++)
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;
const ll mx = 1e4+10;
const ll inf = 1e9;
ll n, a[mx];
ll dp[2][mx];//dp[0] can't jump; dp[1] could jump;
void solve(){
scanf("%lld", &n);
rep(i,1,n) scanf("%lld", &a[i]);
rep(i,1,n) dp[0][i]=dp[1][i]=inf;
dp[0][0]=dp[1][0]=0;
rep(i,1,n){
dp[1][i]=min(dp[1][i], dp[0][i-1]+a[i]);
dp[1][i]=min(dp[1][i], dp[1][i-1]+a[i]);
dp[0][i]=min(dp[0][i], dp[1][i-1]);
if(i-2>=0) dp[0][i]=min(dp[0][i], dp[1][i-2]);
}
ll ans=min(dp[0][n], dp[1][n]);
printf("%lld\n", ans);
}
int main(){
solve();
return 0;
}
算法提高 智能体系列赛
智能体系列赛
题意:猴子要从初始位置开始走,经过每个矿点至少一次。两点之间的距离为曼哈顿距离。求猴子走的最少距离。
思路:状压dp。
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]第一维i表示当前在哪个点,0表示初始点,其他数字表示矿点标号;第二维j表示剩余没走的点集,1表示没走,0表示走了。
代码:
#include<bits/stdc++.h>
#define rep(i,l,r) for(ll i=l;i<=r;i++)
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;
const ll mx = 1e4+10;
const ll inf = 1e9;
struct node{
ll x, y;//x是列数
node(){}
node(ll x, ll y):x(x),y(y){}
}nos[20];
ll n;
ll dp[20][mx];
ll dist(ll a, ll b){
return abs(nos[a].x-nos[b].x)+abs(nos[a].y-nos[b].y);
}
ll dfs(ll c, ll to){
if(dp[c][to]!=-1) return dp[c][to];
rep(i,1,n){
if((to>>(i-1))&1){//如果矿点i没有走过 可以c->i->to-(1<<(i-1))
ll nv=dfs(i, to-(1<<(i-1)))+dist(c,i);
if(dp[c][to]==-1) dp[c][to]=nv;
else dp[c][to]=min(dp[c][to], nv);
}
}
return dp[c][to];
}
void solve(){
memset(dp, -1, sizeof dp);
scanf("%lld %lld", &nos[0].x, &nos[0].y);
scanf("%lld", &n);
rep(i,1,n) dp[i][0]=0;
rep(i,1,n)scanf("%lld %lld", &nos[i].x, &nos[i].y);
ll ans=dfs(0, (1<<n)-1);
printf("%lld\n", ans);
}
int main(){
solve();
return 0;
}