Description
OIER公司是一家大型专业化软件公司,有着数以万计的员工。作为一名出纳员,我的任务之一便是统计每位员工的工资。这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资。如果他心情好,就可能把每位员工的工资加上一个相同的量。反之,如果心情不好,就可能把他们的工资扣除一个相同的量。我真不知道除了调工资他还做什么其它事情。工资的频繁调整很让员工反感,尤其是集体扣除工资的时候,一旦某位员工发现自己的工资已经低于了合同规定的工资下界,他就会立刻气愤地离开公司,并且再也不会回来了。每位员工的工资下界都是统一规定的。每当一个人离开公司,我就要从电脑中把他的工资档案删去,同样,每当公司招聘了一位新员工,我就得为他新建一个工资档案。老板经常到我这边来询问工资情况,他并不问具体某位员工的工资情况,而是问现在工资第k多的员工拿多少工资。每当这时,我就不得不对数万个员工进行一次漫长的排序,然后告诉他答案。好了,现在你已经对我的工作了解不少了。正如你猜的那样,我想请你编一个工资统计程序。怎么样,不是很困难吧?
Input
Output
输出文件的行数为F命令的条数加一。对于每条F命令,你的程序要输出一行,仅包含一个整数,为当前工资第k多的员工所拿的工资数,如果k大于目前员工的数目,则输出-1。输出文件的最后一行包含一个整数,为离开公司的员工的总数。
Sample Input
I 60
I 70
S 50
F 2
I 30
S 15
A 5
F 1
F 2
Sample Output
20
-1
2
HINT
I命令的条数不超过100000 A命令和S命令的总条数不超过100 F命令的条数不超过100000 每次工资调整的调整量不超过1000 新员工的工资不超过100000
Solution
这题可以用任意一种平衡树做,注意有相同工资的员工,插入的时候可以每个节点记录一个cnt表示有几个重复的员工。加减工资可以打标记(我就是这么写的),但由于都是统一加减,所以可以记录一个delta工资变化量,就可以不用打标记,但是要注意新插入的员工工资要减去delta来保证所有员工的变化量统一。删除的时候插入一个工资为最小工资的员工,把它旋转到根,删除右子树(为了方便统计第k大,我的平衡树是左子树>根>右子树,当然也可以反过来),记录下删了几个,再把额外插入的这个员工删掉。
注意!注意!这题最坑的一点是统计走掉的员工数,但是如果是那种插入时就工资低于标准的那种,是不算在内的。这个坑了我一上午。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read(){
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
const int maxn=100010;
struct node{
int fa,ch[2],size,data,add,cnt;
}T[maxn];
int n,minn,num=0,root=0,tot=0;
void create(int x){
T[++num].data=x;
T[num].cnt=T[num].size=1;
T[num].add=T[num].ch[0]=T[num].ch[1]=0;
}
void pushdown(int x){
if(!T[x].add)return;
if(T[x].ch[0]){
T[T[x].ch[0]].data+=T[x].add;
T[T[x].ch[0]].add+=T[x].add;
}
if(T[x].ch[1]){
T[T[x].ch[1]].data+=T[x].add;
T[T[x].ch[1]].add+=T[x].add;
}
T[x].add=0;
}
void update(int x){
if(!x)return;
T[x].size=T[x].cnt;
if(T[x].ch[0])T[x].size+=T[T[x].ch[0]].size;
if(T[x].ch[1])T[x].size+=T[T[x].ch[1]].size;
}
int getson(int x){
return x==T[T[x].fa].ch[1];
}
void rotate(int p){
if(!T[p].fa)return;
int k=getson(p),fa=T[p].fa;
int fafa=T[fa].fa;
pushdown(fa);pushdown(p);
T[fa].ch[k]=T[p].ch[k^1];
if(T[p].ch[k^1])T[T[p].ch[k^1]].fa=fa;
T[p].ch[k^1]=fa;
T[fa].fa=p;
T[p].fa=fafa;
if(fafa)T[fafa].ch[fa==T[fafa].ch[1]]=p;
update(fa);update(p);
}
void Splay(int u){
for(int fa;(fa=T[u].fa);rotate(u)){
if(T[fa].fa){
rotate((getson(u)==getson(fa))?fa:u);
}
}
root=u;
}
void Insert(int x){
if(!root){
create(x);
root=num;T[root].fa=0;
return;
}
int p=root,fa=0;
while(p){
pushdown(p);
if(T[p].data==x){
T[p].cnt++;
update(p);update(fa);
Splay(p);return;
}
fa=p;
p=T[p].ch[x<T[p].data];
}
create(x);
T[num].fa=fa;
T[fa].ch[x<T[fa].data]=num;
update(num);update(fa);
Splay(num);
}
void fixup(){
Insert(minn);
tot+=T[T[root].ch[1]].size;
T[root].ch[1]=0;
if(T[root].cnt>1){
T[root].cnt--;
update(root);
}
else{
root=T[root].ch[0];
T[root].fa=0;
}
}
void add(int x){
T[root].add+=x;
T[root].data+=x;
}
void sub(int x){
T[root].add-=x;
T[root].data-=x;
fixup();
}
int find(int x){
int p=root;
while(1){
pushdown(p);
if(T[p].ch[0]&&x<=T[T[p].ch[0]].size)p=T[p].ch[0];
else{
int temp=T[T[p].ch[0]].size+T[p].cnt;
if(x<=temp)return T[p].data;
x-=temp;
p=T[p].ch[1];
}
}
}
void Init(){
n=read();minn=read();
root=0;
}
void Work(){
char opt;int k;
while(n--){
opt=getchar();
while(opt==' '||opt=='\n')opt=getchar();
k=read();
if(opt=='I'){
if(k>=minn)Insert(k);
}
else if(opt=='A')add(k);
else if(opt=='S')sub(k);
else{
if(k>T[root].size)printf("-1\n");
else printf("%d\n",find(k));
}
}
printf("%d\n",tot);
}
int main(){
Init();
Work();
return 0;
}