title:
输入一个int型数据a,统计a的二进制中1的个数
thought:
利用“位运算”,与1进行“与运算&”
方法一:二进制数依次右移一位并与1做“与操作”“&”,统计操作结果为1的个数
(但是如果二进制是负数(右移前面补1),会造成死循环)
方法二:依次将1左移一位,与二进制数做“与操作”,统计结果等于1的个数
(时间复杂度0(n)n是二进制的位数)
利用“与运算”,a与(a-1)做“与运算”
方法三:将二进制与二进制减1得到的二进制数进行“与操作”,直至与操作结果为0,循环的次数即为1的个数
(时间复杂度:与二进制数中1的个数成正比)
(此方法是利用二进制与二进制减1的二进制数“相与”是把二进制的最右面的1去掉:如1100&(1100-1=1011) = 1000(将1100中右面的1“相与”掉,变成了“1000”))
realize:
方法一这里不采用,因为会造成死循环
方法二:以左移的1为循环条件factor(factor为0时就是左移次数达到二进制的默认位数(VS里是32位)),
a保持不变,如果(a&factor)不为0,说明a的此位为1,以此来统计1的个数。时间复杂度与二进制的位数成正比
方法三:以a为循环条件,a=a&(a-1);这样每一次“与运算”可以将a的最右端的1去掉,
依次循环,直至a变为0,表示a中所有的1都被去掉,所以时间复杂度只与a的1的个数相关,与二进制的位数无关
输入一个int型数据a,统计a的二进制中1的个数
thought:
利用“位运算”,与1进行“与运算&”
方法一:二进制数依次右移一位并与1做“与操作”“&”,统计操作结果为1的个数
(但是如果二进制是负数(右移前面补1),会造成死循环)
方法二:依次将1左移一位,与二进制数做“与操作”,统计结果等于1的个数
(时间复杂度0(n)n是二进制的位数)
利用“与运算”,a与(a-1)做“与运算”
方法三:将二进制与二进制减1得到的二进制数进行“与操作”,直至与操作结果为0,循环的次数即为1的个数
(时间复杂度:与二进制数中1的个数成正比)
(此方法是利用二进制与二进制减1的二进制数“相与”是把二进制的最右面的1去掉:如1100&(1100-1=1011) = 1000(将1100中右面的1“相与”掉,变成了“1000”))
realize:
方法一这里不采用,因为会造成死循环
方法二:以左移的1为循环条件factor(factor为0时就是左移次数达到二进制的默认位数(VS里是32位)),
a保持不变,如果(a&factor)不为0,说明a的此位为1,以此来统计1的个数。时间复杂度与二进制的位数成正比
方法三:以a为循环条件,a=a&(a-1);这样每一次“与运算”可以将a的最右端的1去掉,
依次循环,直至a变为0,表示a中所有的1都被去掉,所以时间复杂度只与a的1的个数相关,与二进制的位数无关
循环次数即为1的个数
#include <iostream>
#include <bitset>
using namespace std;
int _times1(int );
int _times2(int );
int _times1(int num) //方法二
{
int cnt = 0;
unsigned int factor = 1;
while (factor) //以factor做条件,循环次数是默认的二进制长度(经测试本编译器默认32位)
{
if(num & factor) //只是将因子1进行左移,而原始数据num是不变的
cnt++;
factor = factor << 1; //如果语句变成factor << 1,则factor还是没有变化,需要将左移后的值重新赋给factor
}
return cnt;
}
int _times2(int num) //方法三
{
int cnt = 0;
while (num)
{
cnt++;
num = num &(num-1);
cout << num << endl;
}
return cnt;
}
int main()
{
int a;
cout << "请输入待统计的数字:";
while (!(cin >> a))
{
cout << "输入的不是数字,请重新输入:";
cin.clear();
cin.sync();
}
int count_1 = _times1(a);
//int count_1 = _times2(a);
cout << a << "中1的个数:" << count_1 << endl;
return 0;
}