10+统计整数的二进制中1的个数

本文介绍两种高效算法实现:通过位运算统计整数二进制表示中1的个数。方法包括使用左移操作及与运算递减去除最右侧1的方法。并提供了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

title:
输入一个int型数据a,统计a的二进制中1的个数


thought:
利用“位运算”,与1进行“与运算&”
   方法一:二进制数依次右移一位并与1做“与操作”“&”,统计操作结果为1的个数
   (但是如果二进制是负数(右移前面补1),会造成死循环)
  方法二:依次将1左移一位,与二进制数做“与操作”,统计结果等于1的个数
  (时间复杂度0(n)n是二进制的位数)
利用“与运算”,a与(a-1)做“与运算”
  方法三:将二进制与二进制减1得到的二进制数进行“与操作”,直至与操作结果为0,循环的次数即为1的个数
   (时间复杂度:与二进制数中1的个数成正比)
  (此方法是利用二进制与二进制减1的二进制数“相与”是把二进制的最右面的1去掉:如1100&(1100-1=1011) = 1000(将1100中右面的1“相与”掉,变成了“1000”))


realize:
  方法一这里不采用,因为会造成死循环
  方法二:以左移的1为循环条件factor(factor为0时就是左移次数达到二进制的默认位数(VS里是32位)),
      a保持不变,如果(a&factor)不为0,说明a的此位为1,以此来统计1的个数。时间复杂度与二进制的位数成正比
  方法三:以a为循环条件,a=a&(a-1);这样每一次“与运算”可以将a的最右端的1去掉,
       依次循环,直至a变为0,表示a中所有的1都被去掉,所以时间复杂度只与a的1的个数相关,与二进制的位数无关

        循环次数即为1的个数

#include <iostream>
#include <bitset>
using namespace std;
int _times1(int );
int _times2(int );

int _times1(int num)       //方法二
{
	int cnt = 0;
	unsigned int factor = 1;
	while (factor)          //以factor做条件,循环次数是默认的二进制长度(经测试本编译器默认32位)
	{
		if(num & factor)   //只是将因子1进行左移,而原始数据num是不变的
		cnt++;
		factor = factor << 1;   //如果语句变成factor << 1,则factor还是没有变化,需要将左移后的值重新赋给factor
	}
	return cnt;
}

int _times2(int num)         //方法三 
{
	int cnt = 0;
	while (num)
	{
		cnt++;
		num = num &(num-1);
		cout << num << endl;
	}
	return cnt;
}

int main()
{
	int a;
	cout << "请输入待统计的数字:";
	while (!(cin >> a))
	{
		cout << "输入的不是数字,请重新输入:";
		cin.clear();
		cin.sync();
	}
	int count_1 = _times1(a);
	//int count_1 = _times2(a);
	cout << a << "中1的个数:" << count_1 << endl;
	return 0;
}


### 计算整数二进制表示中1的数量 对于计算整数在其二进制形式中有多少个`1`,存在多种方法可以实现这一目标。下面介绍几种常见的算法。 #### 取余法 通过不断对给定数值除以2并检查其余数是否为1统计二进制位上的1的数目。这种方法简单直观但效率较低,因为每次迭代都需要执行一次除法操作[^4]。 ```python def count_binary_ones_remainder(num): count = 0 while num != 0: remainder = num % 2 if remainder == 1: count += 1 num //= 2 return count ``` #### 移位法 利用按位右移运算符逐步处理每一位直到所有的比特都被访问过为止。此方式同样适用于正负整数,在某些情况下可能比取模更高效一些[^3]。 ```c++ #include <iostream> using namespace std; int main() { int value; cin >> value; unsigned int uValue = static_cast<unsigned int>(value); int count = 0; for (unsigned int i = 0; i < sizeof(int)*8 ; ++i){ if((uValue>>i)&1) count++; } cout << "count=" << count << endl; } ``` #### 高级计算法——Brian Kernighan’s Algorithm 这是一种更为高效的解决方案,它基于这样一个事实:当我们将一个数字与其减去一的结果做按位与(&&)时会清除掉最右边的那个'1'。因此只要这个过程不返回零就可以持续减少原值直至其变为零,并在此过程中计数被清除了几次即可得到最终结果[^5]。 ```cpp // C++ implementation of Brian Kernighan's algorithm to find the number of set bits in an integer. int countSetBits(unsigned int n) { int count = 0; while(n){ n &= (n-1); // Clearing the least significant bit set count++; } return count; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值