While walking down the street Vanya saw a label "Hide&Seek". Because he is a programmer, he used & as a bitwise AND for these two words represented as a integers in base 64 and got new word. Now Vanya thinks of some string s and wants to know the number of pairs of words of length |s| (length of s), such that their bitwise AND is equal to s. As this number can be large, output it modulo 109 + 7.
To represent the string as a number in numeral system with base 64 Vanya uses the following rules:
- digits from '0' to '9' correspond to integers from 0 to 9;
- letters from 'A' to 'Z' correspond to integers from 10 to 35;
- letters from 'a' to 'z' correspond to integers from 36 to 61;
- letter '-' correspond to integer 62;
- letter '_' correspond to integer 63.
The only line of the input contains a single word s (1 ≤ |s| ≤ 100 000), consisting of digits, lowercase and uppercase English letters, characters '-' and '_'.
Print a single integer — the number of possible pairs of words, such that their bitwise AND is equal to string s modulo 109 + 7.
z
3
V_V
9
Codeforces
130653412
For a detailed definition of bitwise AND we recommend to take a look in the corresponding article in Wikipedia.
In the first sample, there are 3 possible solutions:
- z&_ = 61&63 = 61 = z
- _&z = 63&61 = 61 = z
- z&z = 61&61 = 61 = z
题意:给定64进制转化方案 一个字符串 问你能用多少对相同长度的字符串与给定的字符串&结果不变
有0就多了三种情况,化为二进制按位判断0的个数 对3幂运算
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <map>
#include <algorithm>
#include <cstring>
using namespace std;
int poi(char ch)
{
if(ch>='0'&&ch<='9')return (int)ch-48;
if(ch>='A'&&ch<='Z')return (int)ch-55;
if(ch>='a'&&ch<='z')return (int)ch-61;
if(ch=='-')return 62;
if(ch=='_')return 63;
}
string s;
int main()
{
while(cin>>s)
{
long long ans=1;
for(int i=0;i<s.size();i++)
{
int cl=poi(s[i]);
for(int j=0;j<6;j++)
{
if(!((cl>>j)&1))ans=ans*3%1000000007;
}
}
cout<<ans<<endl;
}
return 0;
}