题意: 找到0 ~ n 的两两相邻数的二进制数的差异位数总和。
思路: 不难看出其实二进制数的每一位都有一定规律的。
- 二进制第一位的贡献度为 n / (2 ^ 0)
- 二进制第二位的贡献度为 n / (2 ^ 1)
- 二进制第三位的贡献度为 n / (2 ^ 2)
……
如此遍历将每一位的贡献度加起来就是答案啦。
代码实现:
#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9 + 7;
const int N = 2e5 + 5;
ll t, n;
signed main()
{
IOS;
cin >> t;
while(t --){
cin >> n;
ll res = n, ans = 0, i = 1;
while(res){
res >>= 1;
ans += n / i;
i *= 2;
}
cout << ans << endl;
}
return 0;
}