张量 t-product 积(matlab代码)

参考文献:Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm

首先是文章2.3节中 t-product 的定义:

块循环矩阵:

参考知乎博主的例子及代码:(t-product与t-QR分解,另一篇傅里叶对角化也很值得学习)

% A=zeros([3,2,2]);
% B=zeros([2,1,2]);
% 
% A(:,:,1)=[1 0;0 2;-1 3];
% A(:,:,2)=[-2 1;-2 7;0 -1];
% 
% B(:,:,1)=[3;-1];
% B(:,:,2)=[-2;-3];

A=rand(3,2,5);
B=rand(2,1,5);

C=t_product(A,B)

function C=t_product(A,B)
    % @author:slandarer
    % 获取张量大小
    [l,p,n]=size(A);dimA=[l,p,n];
    [p,m,n]=size(B);dimB=[p,m,n];
    dimC=[l,m,n];
    
    % 对A,B进行unfold展开操作
    ufold_A=reshape(permute(A,[2,1,3]),dimA(2),[])';
    ufold_B=reshape(permute(B,[2,1,3]),dimB(2),[])';
    
    % 对A构建循环矩阵
    bcirc_A=zeros([l*n,p*n]);
    for i=1:n
        bcirc_A(:,(1:p)+(i-1)*p)=circshift(ufold_A,l*(i-1),1);
    end
    
    % bcirc(A)·unfold(B)
    AB=bcirc_A*ufold_B;
    
    % 还原张量维度
    C=ipermute(reshape(AB',dimC([2,1,3])),[2,1,3]);
    CC = fft(C, [], 3)   % 观察,张量C后n3-1个切片呈共轭对称
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值