题意: 有一张2n个点的无向图,这个图上每个点标上了0到2 ^ (n-1)之间不同的数字。记pi为第i个点的标号,那么u和v之间连边当且仅当pu与pv的二进制表示恰好有一位不同。
现在告诉了你这张图,但是每个点的标号不见了,请找到一个字典序最小的标号方式,即先比较p1,如果相同的话比较p2,依次类推。
思路:
- 输出2 ^ n个不同的数——说明每个点的标号都能被找到,意味着这是张连通图。且已明文规定是找最小字典序的标号序,所有这样找下来的答案就是唯一且确定的(因为1号点的标号一定是0)。
- 利用bfs可以将图分层,每一层内的值的二进制所包含的’1’的个数从内向外递增,且同一层内的值的二进制所包含的’1’的个数是相等的(并且与上一层的’1’的个数相差1)。
- 在从上往下bfs时先给每个点赋一个符合条件的初值,然后2 ^ n个数的二进制形成一个矩阵。因为排序时只要不改变每个标号二进制’1’的的个数即可,所以矩阵的任意两列交换都不会改变图形。
- 然后我们便可以以贪心的思维来排序矩阵,让小号的点的标号尽量小,以达到最小的字典序列。
- 先感谢下两位大佬的博客给我带来的启发!虽然我用的是大佬1的代码,但我还是更倾向于大佬2的思路讲解。
- 个人觉得下列代码中非常巧妙的地方有bitset的各种运用,vis数组的标记2等等。
代码实现:
#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9 + 7;
const int N = 27e4 + 7;
int t, n, Nn, m, u, v, len;
int vis[N], ans[N], q[N], head, tail;
vector<int> E[N];
bitset<N> a[20];
//将18列进行降序排列
bool cmp(bitset<N> a1, bitset<N> a2){
for(int i = 1; i <= Nn; i ++){
if(a1.test(i) ^ a2.test(i)) //如果a1和a2的第i位不同
return a1.test(i) > a2.test(i);
}
return 0;
}
signed main()
{
IOS;
cin >> t;
while(t --){
cin >> n >> m;
Nn = 1 << n; //有2^n个点
//各种数组的初始化
for(int i = 1; i <= Nn; i ++){
E[i].clear();
vis[i] = ans[i] = 0;
}
for(int i = 0; i < n; i ++)
a[i].reset();
//将图存在二维的vector里面
while(m --){
cin >> u >> v;
E[u].push_back(v);
E[v].push_back(u);
}
vis[1] = 2; head = tail = 0;
//先处理与1号点相接的一层,并将这些点加入队列
for(int i = 0; i < E[1].size(); i ++){
v = E[1][i];
ans[v] = 1 << i;
vis[v] = 2;
q[tail ++] = v;
}
while(head < tail){
u = q[head ++];
for(int i = 0; i < E[u].size(); i ++){
v = E[u][i];
if(vis[v] == 2) //如果该点以及下一层都已经计算过了
continue;
ans[v] |= ans[u];
vis[v] ++;
if(vis[v] == 1) q[tail ++] = v;
}
}
for(int i = 2; i <= Nn; i ++)
for(int j = 0; j < n; j ++) // 如果i号点的第j位是1,那么将a[j]对应的第i位赋成1
if((ans[i] >> j) & 1) a[j].set(i);
sort(a, a + n, cmp);
for(int i = 1; i <= Nn; i ++){
int val = 0;
for(int j = 0; j < n; j ++) //若a[j]的第i位是1
if(a[j].test(i)) val |= 1 << j;
cout << val << " ";
}
cout << endl;
}
return 0;
}