【2021-2022 春学期】人工智能-作业1:PyTorch实现反向传播

本文档介绍了如何在Python环境中安装PyCharm和Python,并详细阐述了如何在PyCharm中安装PyTorch进行反向传播的步骤。首先,通过向导安装Python和PyCharm,接着创建新项目。然后,逐步指导如何在PyCharm中运行PyTorch代码,实现权重更新的反向传播过程。通过示例展示了从计算损失函数到梯度下降的完整训练流程。
摘要由CSDN通过智能技术生成

安装PyCharm

首先要先安装Python否则PyCharm将是一个空壳子。这里我选择安装python3.5.1。按照向导完成安装并配置环境变量。

在这里插入图片描述
在这里插入图片描述

完成后下载PyCharm,免费的社区版足够了请添加图片描述

在这里插入图片描述

按照向导完成安装

然后create new project

在这里插入图片描述
在这里插入图片描述

安装环节到此结束

安装PyTorch

在这里插入图片描述
这里根据自己的计算机配置选择对应的选项,就会生成一个下载命令,在cmd里运行这个命令
在这里插入图片描述
这里需要等待比较长的时间。安装完成后就可以开始实现反向传播

实现反向传播

把PyTorch放入PyCharm中

在这里插入图片描述

import torch
import numpy as np
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0]) # 权重初始值
w.requires_grad = True # 是否需要计算梯度,Tensor创建之后默认不计算梯度
 
 
# y_predict = x * w
def forward(x):
    return x * w
 
 
def loss(x, y):  # 损失函数
    y_pred = forward(x)
    return (y_pred - y) ** 2
 
 
# 训练过程
# 第一步:先算损失 Loss
# 第二步:backward,反向传播
# 第三步:梯度下降
 
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)  # 前向传播,求 Loss,构建计算图
        l.backward()  # 反向传播,求出计算图中所有梯度存入w中
        print("\tgrad: ", x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data  # w..grad.data:获取梯度,用data计算,不会建立计算图
 
        w.grad.data.zero_()  # 注意:将w中所有梯度清零
 
    print("pregress:", epoch, l.item())

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值