安装PyCharm
首先要先安装Python否则PyCharm将是一个空壳子。这里我选择安装python3.5.1。按照向导完成安装并配置环境变量。
完成后下载PyCharm,免费的社区版足够了
按照向导完成安装
然后create new project
安装环节到此结束
安装PyTorch
这里根据自己的计算机配置选择对应的选项,就会生成一个下载命令,在cmd里运行这个命令
这里需要等待比较长的时间。安装完成后就可以开始实现反向传播
实现反向传播
把PyTorch放入PyCharm中
import torch
import numpy as np
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0]) # 权重初始值
w.requires_grad = True # 是否需要计算梯度,Tensor创建之后默认不计算梯度
# y_predict = x * w
def forward(x):
return x * w
def loss(x, y): # 损失函数
y_pred = forward(x)
return (y_pred - y) ** 2
# 训练过程
# 第一步:先算损失 Loss
# 第二步:backward,反向传播
# 第三步:梯度下降
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y) # 前向传播,求 Loss,构建计算图
l.backward() # 反向传播,求出计算图中所有梯度存入w中
print("\tgrad: ", x, y, w.grad.item())
w.data = w.data - 0.01 * w.grad.data # w..grad.data:获取梯度,用data计算,不会建立计算图
w.grad.data.zero_() # 注意:将w中所有梯度清零
print("pregress:", epoch, l.item())
运行结果: