- 博客(238)
- 资源 (37)
- 收藏
- 关注

原创 【python三维深度学习】python三维点云从基础到深度学习
从三维点云基础知识到深度学习,将按照以下目录持续进行更新。更新完成的部分可以在三维点云专栏中查看。含数据与python源码。
2022-04-07 15:30:05
18641
8
原创 使用Python和OpenCV批量可视化labelme分割标注结果
【原创声明】本文为博主原创文章,未经博主允许不得转载。更多算法总结请关注我的博客:https://blog.csdn.net/suiyingy。 在计算机视觉领域中,图像分割是一项重要的任务,它可以将图像中的不同物体或区域进行像素级别的分割。而在图像分割任务中,人工标注数据是非常关键的一环。本文将介绍如何使用Python和OpenCV库对labelme分割标注结果进行批量可视化处理。 在开始之前,我们需要安装以下依赖库: - OpenCV:用于图像处理和可视
2023-09-26 07:00:00
18
原创 labelme标注信息统计及使用方法
labelme是一款开源的图像标注工具,它基于Python语言开发,支持Windows、Linux和Mac等操作系统。它提供了直观的图形界面,允许用户在图像上标注多种类型的目标,比如矩形框、多边形、线条等。标注结果以JSON格式保存,便于后续处理和分析。本文介绍了labelme标注工具的基本情况,并通过示例程序演示如何使用labelme进行标注信息的统计。标注信息的统计对于数据集管理和算法模型的训练都是非常重要的工作,它可以帮助我们更好地了解数据的分布情况,为后续的工作提供参考和指导。
2023-09-25 14:19:12
34
原创 详细理解GPT2模型结构及其训练过程—GPT系列训练与部署
本文为专栏《Python从零开始进行AIGC大模型训练与推理》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。
2023-05-30 07:51:09
1520
原创 ColossalAI GPT2分布式训练调试配置—GPT系列训练与部署
本文为专栏《Python从零开始进行AIGC大模型训练与推理》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。
2023-05-17 06:30:00
509
原创 图生图—AI图片生成Stable Diffusion参数及使用方式详细介绍
本文为专栏《Python从零开始进行AIGC大模型训练与推理》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。
2023-05-16 07:00:00
5905
原创 GPT系列训练与部署——GPT2环境配置与模型训练
更多AIGC类模型训练、推理及部署请参考本专栏文章《Python从零开始进行AIGC大模型训练与推理》,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。我们也会在文末下方公众号中进行同步更新。相关AIGC模型体验会在RdFast小程序中同步上线。
2023-05-15 07:00:00
1493
原创 基于ChatGPT官方API的电脑桌面版应用抢先体验
今天主要是利用ChatGPT官方内测API搭建的一个桌面程序,以方便大家使用,桌面程序可在CSDN中直接下载。下载地址为:“”。如有任何疑问,都可在本文下进行留言。或者前往https://devpress.csdn.net/rdchat进行留言。 ChatGPT官方API目前还在内测当中,OpenAI官网上也没有任何接口介绍和文档。这对于开发和调用来说不怎么方便。但是,比较好的地方在于内测过程中调用是免费的,没有次数限制。此外,API接口调用不需要梯子或代理(使用代理反而可能会报错“Error
2023-05-11 08:06:11
6582
9
原创 GPT系列训练与部署——Colossal-AI环境配置与测试验证
Colossal-AI的教程地址为“https://colossalai.org/docs/get_started/run_demo”,模型示例工程为“https://github.com/hpcaitech/ColossalAI-Examples”。》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。Colossal-AI项目地址为“https://github.com/hpcaitech/ColossalAI”。
2023-05-10 07:00:00
878
原创 AI图片生成Stable Diffusion参数及使用方式详细介绍
AI图片生成Stable Diffusion参数及使用方式详细介绍,Python从零开始进行AIGC大模型训练与推理。
2023-05-09 07:00:00
2719
原创 AI图片生成Stable Diffusion环境搭建与运行
例如,stable-diffusion-2-1的下载地址为“https://huggingface.co/stabilityai/stable-diffusion-2-1”,点击页面中的“Files and versions”即可看到对应的模型文件。stable-diffusion-webui提供了网页前端页面用于Stable Diffusion模型生成图片,其Github官方工程地址为“https://github.com/AUTOMATIC1111/stable-diffusion-webui”。
2023-05-08 07:30:00
3106
原创 ChatGPT平替- ChatGLM多用户并行访问部署
ChatGLM对话模型基本环境配置和部署请参考上一篇博文《ChatGPT平替-ChatGLM环境搭建与部署运行》,地址为“https://blog.csdn.net/suiyingy/article/details/130370190”。但是,默认部署程序仅支持单用户访问,多用户则需要排队访问。测试过相关的几个Github多用户工程,但是其中一些仍然不满足要求。
2023-05-05 08:00:00
5284
10
原创 python web.py启动https端口
web.py启动https端口需要ssl证书,如果没有ssl证书,那么可以通过如下方式生成。具体可参考“https://blog.csdn.net/FinalDragonborn/article/details/79301026”。
2023-05-03 07:00:00
192
原创 huggingfacer QuestionAnswerig问答模型调用方式
huggingface网站提供了大量深度学习预训练模型及其调用方式。本文主要介绍问答模型调用方式,主要是针对问答结果输出完整上下文的问题。其现象在于问题答案为输入的上下文,而不是答案部分。出现该问题主要原因是transformers版本过低。
2023-05-02 17:17:51
211
原创 Docker AIGC等大模型深度学习环境搭建(完整详细版)
本文是《》(https://blog.csdn.net/suiyingy/article/details/130169592)专栏的一部分,所述方法和步骤基本上是通用的,不局限于AIGC大模型深度学习环境。ChatGPT、Stable Diffusion等大模型属于相对较新的模型,所以依赖的Pytorch经常为torch1.12以上版本。相应的CUDA版本则至少为CUDA 11.3,并且显卡驱动对应的CUDA版本号不能小于CUDA库的版本号。下面将以CUDA 11.8驱动安装为例。
2023-04-21 21:04:30
3108
原创 Python从零开始进行AIGC大模型训练与推理
本专栏将详细介绍从零开始进行AIGC大模型训练与推理,包括文本生成(GPT系列)和图片生成(Stable Diffusion系列)等,初步计划从以下提纲逐步进行博文分享,欢迎关注。(8)Stable Diffusion原理介绍、训练、推理、部署。(9)ControlNet原理介绍、训练、推理、部署。(6)ChatGPT原理介绍、训练、推理、部署。(7)ChatGLM原理介绍、训练、推理、部署。(4)GPT2原理介绍、训练、推理、部署。(5)GPT3原理介绍、训练、推理、部署。
2023-04-17 07:00:00
3059
原创 Python调用GPT3.5接口的最新方法
GPT3.5接口调用方法主要包括openai安装、api_requestor.py替换、接口调用、示例程序说明四个部分。
2023-03-27 07:00:00
17457
29
原创 ChatGPT(GPT3.5) OpenAI官方API正式发布
OpenAI社区今天凌晨4点多发送的邮件,介绍了ChatGPT官方API的发布。官方介绍文档地址为“”和“ChatGPT(GPT3.5)官方API模型名称为“gpt-3.5-turbo”和“gpt-3.5-turbo-0301”。API调用价格比GPT text-davinci-003模型便宜10倍。调用费用为0.002美元/1000tokens,折合下来差不多0.1元4000~5000字。这个字数包括问题和返回结果字数。
2023-03-02 08:24:12
12922
43
原创 不要让GPT成为你通向“学业作弊”的捷径——使用GPT检测工具来帮助你保持正确的方向
不要让GPT成为你通向“学业作弊”的捷径——使用GPT检测工具来帮助你保持正确的方向。
2023-02-19 11:26:36
5955
2
原创 一招鉴别真假ChatGPT,并简要介绍ChatGPT、GPT、GPT2和GPT3模型之间的区别和联系
一招鉴别真假ChatGPT,并简要介绍ChatGPT、GPT、GPT2和GPT3模型之间的区别和联系
2023-02-19 07:30:00
26685
12
原创 chatgpt网页版替代方法
从昨天网上开始一直开着的chatgpt网页突然打不开了,提示1020错误,尝试换了不同代理软件或者代理地点仍然无法解决,也搜了很多资料,比如删除cookie、重启浏览器、更换浏览器等均不起作用。如果后续有解决方案,将在这篇文章更新;如果大家有解决方案,欢迎在文章下方留言。之前介绍的公众号内使用chatgpt方法仍然有效,不需要注册和代理即可使用。可在公众号内直接体验chatgpt,也可以按照之前博文。网站上也有多人反馈该问题,但是仍没有解决方案。下面这个网址是大家反馈的最新内容。
2023-02-13 07:57:59
11538
3
原创 transformer 4 RuntimeError: Expected tensor for argument #1 ‘indices‘ to have scalar type Long
在使用transformer 4.0时,报错误提示RuntimeError: Expected tensor for argument #1 'indices' to have scalar type Long;该问题主要时由于tensor的类型导致的,解决方法是在相应报错行的前一行对数据类型进行转换。假设输入数据为x,那么增加行为“x = torch.tensor(x).to(torch.int64)”。
2023-01-16 08:00:00
3209
原创 【三维目标检测】FCAF3D(二)
FCAF3D数据和源码配置调试过程请参考上一篇博文:。本文主要详细介绍FCAF3D网络结构及其运行中间状态。
2022-12-15 19:22:16
2830
原创 【三维目标检测】FCAF3D(一)
FCAF3D模型的整体结构如下图所示。该模型属于anchor-free目标检测算法。FCAF3D主干网络采用的是典型的ResNet34 FPN结构。该结构采用了三维稀疏卷积进行计算,计算过程中得到的非稀疏点作为Head预测的种子点。FPN层实现了四种不同特征尺度下的预测,各种尺度下的特征维度分别为64、128、256和512。
2022-12-14 07:45:47
3363
1
原创 mmdetection3d S3DIS (持续更新)
Mmdetection3d集成了大量3D深度学习算法,其中很大一部分可以在室内三维数据集S3DIS上运行。本节重点介绍S3DIS数据集及其在mmdetection3d中的预处理程序。
2022-12-13 07:44:36
2666
2
原创 ChatGPT介绍世界杯历史与编写足球游戏python程序
ChatGPT聊天机器人最近非常流行,是由OpenAI于本月发布的。花了一点时间注册了一个账号,如有需要帮助注册的可以随时与我交流。注册过程相对有一些复杂。除了常规的聊天对话功能之外,ChatGPT聊天机器具备强大的文本生成能力,例如博客、文章等,甚至是可以实现程序代码的自动生成。下面主要介绍这两个功能的体验。下面内容主要来源于ChatGPT对世界杯历史的介绍。抛给ChatGPT的两个问题分别是:“写一篇2000字关于世界杯历史的文章”和“用pygame编写一个足球游戏程序”。
2022-12-12 07:49:58
5555
原创 【三维目标检测】SSN(一)
SSN主要结构如下图所示,其核心在于提出了shape-aware heads grouping和shape signature结构,前者针对不同类别目标设置不同Head,并得到不同尺度的特征图。相比于其他网络采用单一尺度的特征图,这种方法的可以有效提升精度,但是参数量也大大增加。从实现过程来看,这种结构实际上与增加anchor和FPN的作用相近似。另一方面,读者也可以类比以下yolov5的Head结构。
2022-12-09 08:59:17
2223
原创 【三维目标检测】SASSD(二)
yolo目标检测数据采用矩形框进行标注,其标注格式为[cls_id xp yp wp hp],cls_id表示目标所属的类别序号。xp、yp表示目标中心点相对坐标,其中xp等于目标的绝对横坐标除以图像宽度,yp等于目标的绝对纵坐标除以图像高度。wp和hp表示目标的相对宽度和高度,其中wp等于目标的绝对宽度除以图像宽度,hp等于目标的绝对高度除以图像高度。每张图片的标注结果以txt文本文件存储,每一行[cls_id xp yp wp hp]表示一个目标。
2022-12-08 15:02:44
2625
原创 【三维目标检测】SASSD(一)
SASSD是用于点云三维目标检测模型算法,发表在CVPR 2020《Structure Aware Single-stage 3D Object Detection from Point Cloud》,论文地址为“https://www4.comp.polyu.edu.hk/~cslzhang/paper/SA-SSD.pdf”。SASSD与基于Anchor的目标检测模型的结构基本保持一致,其核心特点在于采用了一个语义分割网络来辅助候选框特征提取,使产生的候选框质量更高。辅助网络这一点与PointRCNN和
2022-12-07 07:30:14
2557
原创 霍夫投票直观理解
聚合的作用可类比上文中的直线交点,即聚合空间中的点投票给了同一个目标。如果以顶点参数为做一条直线,即将这些直线变换到参数空间,那么这个定点对应参数空间中的一条直线。如果在参数空间中有两条直线相交于同一个点,那么说明对应的两个定点在同一条直线上。交点处直线越多,则原始空间中处于同一条直线的点的数量越多。位置得票越多,说明投票给这个位置的定点越多,并且这些定点处于同一条直线上。在参数空间中,坐标实际上与直线的斜率和截距一一对应,因此,参数空间中的每一个位置点都对应了原坐标空间中的一条直线。
2022-12-06 07:55:43
2951
原创 【三维目标检测】VoteNet(二)
VoteNet数据和源码配置调试过程请参考上一篇博文:xxxx。本文主要详细介绍VoteNet网络结构及其运行中间状态。 VoteNet核心思想在于通过霍夫投票的方法实现了端到端3D对象检测网络,属于anchor free的目标检测方式。传统基于anchor的三维目标检测方法会将三维点云投影到bev视图后采用二维目标检测的方式来生成目标候选框。这种方式很有可能会丢失物体细节。 VoteNet模型结构如下图所示。该模型大量用到了PointNet结构。在主干网络中,VoteNet利用
2022-12-05 07:47:44
3584
原创 【三维目标检测】VoteNet(一)
VoteNet核心思想在于通过霍夫投票的方法实现了端到端3D对象检测网络,属于anchor free的目标检测方式。传统基于anchor的三维目标检测方法会将三维点云投影到bev视图后采用二维目标检测的方式来生成目标候选框。这种方式很有可能会丢失物体细节。霍夫投票法最典型的示例是二维图像中霍夫直线检测。过二维平面中的定点可以得到无数条直线。如果以顶点参数为做一条直线,即将这些直线变换到参数空间,那么这个定点对应参数空间中的一条直线。
2022-12-04 09:13:59
3920
原创 【三维目标检测】CenterPoint(二)
CenterPoint数据和源码配置调试过程请参考上一篇博文:https://blog.csdn.net/suiyingy/article/details/128002709。本文主要详细介绍CenterPoint网络结构及其运行中间状态。 CenterPoint模型的整体结构如下图所示,由最初的一阶段模型扩展为了两阶段模型。第二阶段负责对第一阶段的检测结果进行微调修正,与基于候选框的两阶段目标检测思想基本一致。这里重点介绍CenterPoint的第一个阶段,并且单阶段的CenterPoint
2022-12-03 11:58:11
4674
2
原创 【三维目标检测】CenterPoint(一)
CenterPoint模型的整体结构如下图所示,由最初的一阶段模型扩展为了两阶段模型。第二阶段负责对第一阶段的检测结果进行微调修正,与基于候选框的两阶段目标检测思想基本一致。这里重点介绍CenterPoint的第一个阶段,并且单阶段的CenterPoint可直接完成对三维目标的检测。图1 CenterPoint模型结构CenterPoint模型的关键数据和路径包含如下几个方面。带着这几个关键点来深入理解算法程序时效率会大大提高。
2022-12-02 08:30:00
5254
3
原创 mmdetection3d nuScenes (持续更新)
Mmdetection3d集成了大量3D深度学习算法,其中很大一部分可以在智能驾驶nuScenes数据集上运行。在算法应用nuScenes数据之前,mmdetection3d提供了相应的预处理程序。关于nuScenes的详细介绍请参考本博客之前的文章。部分介绍内容会持续更新和补充。
2022-12-01 09:00:00
4074
8
原创 mmdetection3d SUN RGB-D数据集预处理
SUN RGB-D是普林斯顿大学发布的一种关于室内场景理解的数据集,共包含了10335个样本,其中训练样本和验证测试样本数量分别为5285和5050。每个样本包含了彩色图像(RGB)和深度(D)信息,并且分别进行了二维和三维标注。数据集的具体细节将在后续进行补充,这里主要介绍如何在mmdection3d中使用SUN RGB-D数据集。
2022-11-30 09:00:00
3626
4
ChatGLM、ChatGLM6B多用户访问接口
2023-04-29
mmdetection SUN RGB-D数据集Python预处理程序
2022-11-28
minist手写数字可视化数据集
2022-07-02
hv_second_secfpn
2022-06-03
complex_yolov4_pytorch预训练模型
2022-06-01
pip安装文件get-pip
2022-05-31
kitti mini data object crop 数据
2022-05-25
pcl-1.8.1-vs2017
2022-05-23
python_pcl wheel 文件
2022-05-23
train_val_test for mini kitti
2022-05-18
mini kitti数据集
2022-05-17
kitti mini版校准数据calib
2022-05-15
kitti mini版图像数据image_2
2022-05-13
kitti mini版标签数据label_2
2022-05-12
kitti mini版激光雷达数据
2022-05-10
点云语义分割可视化样例数据
2022-05-09
python点云拼接样例数据
2022-04-23
python点云配准样例数据
2022-04-23
bin格式点云样例文件
2022-04-17
C++ libTorch cpu debug 版本
2022-04-12
C++ libTorch cpu release 版本
2022-04-12
modelnet40点云样例数据
2022-04-07
Yolov5 最简推理代码
2022-04-07
基于libcurl的c++ http POST 和 GET
2022-01-07
微信自动发卡机器人.zip
2021-12-06
内网穿透frp_0.37.1_linux_amd64.tar.gz
2021-08-29
内网穿透frp_0.37.1_windows_amd64.zip
2021-08-29
C++调用Python
2021-07-24
rapidjson头文件
2021-07-23
谁能解释一下为什么CSDN付费资源抽成至少40%
2023-05-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人