# SICP学习笔记 2.2.1 序列的表示

练习2.17

;; 直接利用已经实现的list-ref和length过程即可
(define (last-pair items)
(if (null? items)
(display "null")
(list-ref items (- (length items) 1))))

练习2.18

;; 翻转即为将列表第二个元素翻转再加上第一个元素
(define (reverse items)
(if (null? items)
'()
(append (reverse (cdr items)) (list (car items)))))
;; 翻转即为倒序取列表值再组合成新的列表
(define (reverse items)
(define (reverse-iter a n)
(if (< n 0)
'()
(cons (list-ref a n) (reverse-iter a (- n 1)))))
(reverse-iter items (- (length items) 1)))


练习2.19

(define (no-more? coin-values)
(null? coin-values))

(define (except-first-denomination coin-values)
(cdr coin-values))

(define (first-denomination coin-values)
(car coin-values))

1 ]=> (cc 100 us-coins)
;Value: 292

1 ]=> (cc 100 (reverse us-coins))
;Value: 292

;; 改变coin-values的顺序不会影响结果
;; 因为在cc过程中递归的累加 只用某种币值的兑换种数和除去这种币值后的兑换种数, 因此和次数无关

练习2.20

;; 首先定义flag过程, 以判断传入的两个数是否奇偶性一致
;; 然后在get-list过程中递归使用cdr取列表的剩余部分完成奇偶性检查
;; 最后将参数拼接成列表调用get-list过程
(define (same-parity x . y)
(define (flag a b)
(= (remainder a 2) (remainder b 2)))
(define (get-list items)
(if (null? items)
'()
(if (flag x (car items))
(cons (car items) (get-list (cdr items)))
(get-list (cdr items)))))
(get-list (cons x y)))

1 ]=> (same-parity 1 2 3 4 5 6 7)
;Value : (1 3 5 7)

1 ]=> (same-parity 2 3 4 5 6 7)
;Value : (2 4 6)

1 ]=> (same-parity 2 2 0 128 6 7)
;Value : (2 2 0 128 6)


练习2.21

(define (square-list items)
(if (null? items)
'()
(cons (square (car items))
(square-list (cdr items)))))

(define (square-list items)
(map (lambda (x) (square x)) items)) 

练习2.22

;; Louis在组成新的结果时, 在cons的两个参数上搞反了
;; 调整之后因为对列表和数值直接结合导致出现如下结果
;Value : (((((() . 1) . 4) . 9) . 16) . 25)

;; 因此做如下修正, 将数值变换为列表然后再和之前的结果相加
(define (square-list items)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(append answer
(list (square (car things)))))))
(iter items '()))

练习2.23

(define (for-each proc items)
(if (null? items)
'()
(and (proc (car items))
(for-each proc (cdr items)))))