[POJ3415]公共子串

字符串T的一个子串定义为:

T(i,k)=T[i]T[i+1]...T[i+k-1],1<=i<=i+k-1<=|T|。

给出两个字符串A,B,一个整数K,我们定义S是一个由三元组构成的集合:

S={(i,j,k)|k>=K,A(i,k)=B(j,k)}。

你需要对于A,B,K,给出|S|的值。

【输入格式】

输入包含多组数据。

每组数据的第一行是一个正整数K,接下来是两行,分别是字符串A和B。输入结束标志为K=0。

【输出格式】

对每组数据输出一行一个整数,即|S|。

【样例输入】


2

aababaa

abaabaa

1

xx

xx


0

【样例输出】


22

5

【提示】

1<=|A|,|B|<=10^5

1<=K<=min{|A|,|B|}

A和B中仅含小写字母。

把两个串连接起来,求一个后缀数组。
rank 数组中从前往后枚举起点,对于每个枚举的起点,都暴力的往后扫,扫的过程中维护一个 height 的最小值。每到一个点的时候,如果这个点跟起点不属于一个串,就将答案加上当前的最小值,这样是 O(n2)

考虑这个还能怎么算。可以发现我们是维护 height 的最小值。那么我们可以按照 height 从大到小的顺序扫,这样每次需要用的就是当前的 height
扫的过程中用并查集维护一下每个串分别对哪些串有贡献的(也就是 height 数组的贡献)。
用乘法原理算一下当前的 height 会有多少贡献。就是用当前的 height 乘上这个串和上一个串分别对于两个两个不同的原串的乘积的和。

需要特判当前串是否大于等于k

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
const int N=400010;
LL ans;
char ss[N];
int lk;
int n,m,len[2],sa[N],c[N],rank[N],height[N],t1[N],t2[N],s[N],fa[N],st[N],en[N],a[N];
inline bool cmp(int *y,int p,int q,int k){
    int o0=p+k>=n?-1:y[p+k];
    int o1=q+k>=n?-1:y[q+k];
    return o0==o1&&y[p]==y[q];
}
inline void build_sa(){
    int i,k,p,*x=t1,*y=t2;
    for(m=28,i=0;i<m;++i) c[i]=0;
    for(i=0;i<n;++i) ++c[x[i]=s[i]];
    for(i=1;i<m;++i) c[i]+=c[i-1];
    for(i=n-1;i>=0;--i) sa[--c[x[i]]]=i;
    for(k=1;k<=n;k<<=1){
        for(p=0,i=n-k;i<n;++i) y[p++]=i;
        for(i=0;i<n;++i) if(sa[i]>=k) y[p++]=sa[i]-k;
        for(i=0;i<m;++i) c[i]=0;
        for(i=0;i<n;++i) ++c[x[y[i]]];
        for(i=1;i<m;++i) c[i]+=c[i-1];
        for(i=n-1;i>=0;--i) sa[--c[x[y[i]]]]=y[i];
        swap(x,y);
        m=1;x[sa[0]]=0;
        for(i=1;i<n;++i) 
			x[sa[i]]=cmp(y,sa[i],sa[i-1],k)?m-1:m++;
        if(m>=n) break;
    }
}
inline void build_height(){
    int k=0,j;
    for(int i=0;i<n;++i) 
		rank[sa[i]]=i;
    for(int i=0;i<n;++i){
        if(!rank[i]) 
			continue;
        k--;
		if(k<0)
			k=0;
        j=sa[rank[i]-1];
        while(s[i+k]==s[j+k]) 
			k++;
        height[rank[i]]=k;
    }
}
inline bool CMP(int x,int y){
    return height[x]>height[y];
}
inline int find(int x){
    if(x!=fa[x]) 
		fa[x]=find(fa[x]);
    return fa[x];
}
int mk;
inline void calc(int x){
    if(!x) 
		return ;
    int r1=find(x),r2=find(x-1);
	int res=height[x]>=mk?height[x]-mk+1:0;
    ans+=(LL)(st[r1]*en[r2]+st[r2]*en[r1])*(LL)res;
    st[r1]+=st[r2];en[r1]+=en[r2];fa[r2]=r1;
}
int main(){
	freopen("commonsubstrings.in","r",stdin);
	freopen("commonsubstrings.out","w",stdout);
	while(scanf("%d",&mk)&&mk!=0){
		memset(s,0,sizeof(s));
		memset(c,0,sizeof(c));
		ans=0;
		scanf("%s",ss);
		len[0]=strlen(ss);
		for(int i=0;i<len[0];++i) 
			s[i]=ss[i]-'a'+1;
		scanf("%s",ss);
		len[1]=strlen(ss);
		int i;
		for(s[len[0]]=27,i=0;i<len[1];i++) 
			s[i+len[0]+1]=ss[i]-'a'+1;
		n=len[0]+len[1]+1;
		m=40;
		build_sa();
		build_height();
		for(i=0;i<n;++i){
			a[i]=fa[i]=i;
			st[i]=(sa[i]<len[0]);
			en[i]=1-st[i];
		}
		sort(a,a+n,CMP);
		for(i=0;i<n;++i) 
			calc(a[i]);
		printf("%lld\n",ans);
	}
return 0;
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值