【题目描述】
Asm.Def已经突破了圣迭戈的基础防御设施,来到了透明计算网络所在的机房,发现事情并非想象的那样简单。
由于透明计算网络的特性,可以实现文件多节点储存、计算资源的实时调度。摧毁它并非易事。透明计算网络可以抽象成一张图,它的每个节点都互相连接。透明计算网络采用的调度策略有缺陷,如果使整张网络中任意(即所有)三个点组成的三角形,之间的链接断开一条或者三条全部断开,可使得整个服务离线。
现在有些链接被加固,即不可能被断开。有些链接已经被断开。现在让你选择断开一些链接使得整个服务离线,有多少种方案呢?方案数对998244353取模。认为两个方案不同仅当存在一条边在这两个方案中一个被断开,另一个没有断开。
【输入格式】
第一行两个整数n和m,表示有n个节点,和已经有m个链接被断开或者加固。
接下来m行每行三个整数op u v,op为1是表示u和v的链接被加固,op为0是表示u和v的链接被断开。
【输出格式】
一行一个整数,表示有多少中方案。方案数对998244353取模。
【样例输入1】
3 0
【样例输出1】
4
【样例输入1说明】
样例一解释
可以断开1-2,2-3,1-3的链接,或1-2的链接,或2-3的链接,或1-3的链接。共4种方案
【样例输入2】
4 4 0 1 2 0 2 3 1 3 4 1 4 1
【样例输出2】
1
【样例输入2说明】
只能断开1-3,使得三角形(1,2,3)全部被断开,三角形(1,4,3)只被断开一条边
【样例输入3】
4 4 0 1 2 0 2 3 1 3 4 0 4 1
【样例输出3】
0
【数据规模与约定】
30%的数据,1 <= n <= 7,m <= 21
另外40%的数据,1 <= n <= 100000,m = 0
另外30%的数据,1 <= n <= 100000,m <= 100000
考虑和1号点的连接方法
若i,j之间连虚边 则1->i==i->j 可以用并查集合并
如果i,j之间连实边 则1->i!=1->j 用二分图染色判断合法性
答案为2^(二分图个数-1)(去掉1号点)
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;
const int maxn=100000+10;
const int MOD=998244353;
vector<int>A[maxn];
int fa[maxn];
int color[maxn];
int pre[maxn];
int n,m;
int ok;
int a[maxn],b[maxn],c[maxn];
inline int find(int x){
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
inline void cant(){
puts("0");
exit(0);
}
inline void dfs(int u,int c){
if(color[u]){
if(color[u]!=c)
cant();
return;
}
color[u]=c;
c=3-c;
for(int i=0;i<A[u].size();i++){
int v=A[u][i];
dfs(v,c);
}
}
inline long long qpow(int k){
if(!k)
return 1;
if(k==1)
return 2;
long long tmp=qpow(k/2)%MOD;
tmp=tmp*tmp%MOD;
if(k&1)
tmp=tmp*2%MOD;
return tmp;
}
int main(){
freopen("tria.in","r",stdin);
freopen("tria.out","w",stdout);
int n,m;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=m;i++){
scanf("%d %d %d",&a[i],&b[i],&c[i]);
if(b[i]>c[i])
swap(b[i],c[i]);
}
for(int i=1;i<=m;i++){
if(a[i]==0){
int fy=find(b[i]),fz=find(c[i]);
if(fy!=fz)
fa[fy]=fz;
}
}
for(int i=1;i<=n;i++)
find(i);
for(int i=1;i<=m;i++){
if(a[i]){
int fy=find(b[i]),fz=find(c[i]);
A[fy].push_back(fz);
A[fz].push_back(fy);
}
}
int cnt=0;
for(int i=1;i<=n;i++){
if(fa[i]==i&&!color[i]){
dfs(i,1);
cnt++;
}
}
printf("%lld\n",qpow(cnt-1)%MOD);
//for(int i=1;i<=n;i++)
// printf("%d\n",fa[i]);
/*int size=0;
for(int i=1;i<=n;i++)
if(fa[i]==i){
printf("0 ");
size++;
for(int j=0;j<A[i].size();i++){
printf("%d ",A[i][j]);
size++;
}
puts("");
}*/
return 0;
}