qbxt集训cogs2682. 膜拜

本文解析了一道关于图论的竞赛题目,通过Tarjan算法压缩强连通分量,将原图转化为有向无环图(DAG)。利用SPFA算法求解最长路径,以确定在允许逆转一次边方向的情况下,角色xlm能够膜拜的最大神犇数量。
摘要由CSDN通过智能技术生成

【题目描述】


有一个n个点m条边的有向图,xlm可以从1号点出发在图上走,并且最终需要回到1号点。每个点都有一个神犇(包括1号点),每次经过一个没到过的点,xlm都会膜拜那位神犇。xlm希望膜拜尽可能多的神犇。

由于xlm膜拜神犇的欲望非常强烈,所以他可以有一次机会逆着一条有向边的方向走。(需要注意的是,这条边的方向不会改变)

你现在想知道,xlm最多能膜拜多少神犇?


【输入格式】


输入到OrzOrz.in

第一行2个整数n、m,分别表示图的点数和边数。

第2行到底m+1行,每行两个整数u,v,描述一条u到v的有向边。


【输出格式】


输出到OrzOrz.out

一行一个整数表示xlm最多能膜拜多少神犇。


【样例输入】

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7

【样例输出】

6

【提示】


【数据范围】

对于25%的数据,保证n<=100,m<=250,

对于43.75%的数据,保证n<=3,000,m<=7,000。

对于100%的数据,保证n,m<=100,000。


【来源】

QBXT春令营精英班第一次测试T2

先tarjan缩一波点

那么图变成了一个DAG

考虑一条边被反转的贡献 是从1到这条边终点最长路+从1到这条边起点最长路-1号点所在scc点数

最长路用spfa跑

时间复杂度O(n*玄学)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
const int maxn=100000+10;
vector<int>A[maxn];
vector<int>G[maxn];
vector<int>RG[maxn];
int f[maxn],g[maxn];
int s[maxn];
int dfn[maxn],low[maxn];
int ins[maxn];
int ind=0;
int edge=1;
int vis[maxn];
int size[maxn];
int top=0;
int fa[maxn];
queue<int>q;
inline void tarjan(int x){
	dfn[x]=low[x]=++ind;
	s[++top]=x;
	ins[x]=1;
	for(int i=0;i<A[x].size();i++){
		int u=A[x][i];
		if(!dfn[u]){
			tarjan(u);
			low[x]=min(low[x],low[u]);
		}
		else if(ins[u])
			low[x]=min(low[x],dfn[u]);
	}
	if(low[x]==dfn[x]){
		while(s[top]!=x){
			size[x]++;
			fa[s[top]]=x;
			ins[s[top]]=0;
			top--;
		}
		size[x]++;
		ins[x]=0;
		fa[x]=x;
		top--;
	}
}
int main(){
	freopen("OrzOrz.in","r",stdin);
	freopen("OrzOrz.out","w",stdout);
	int n,m;
	scanf("%d %d",&n,&m);
	int x,y;
	for(int i=1;i<=m;i++){
		scanf("%d %d",&x,&y);
		A[x].push_back(y);
	}
	for(int i=1;i<=n;i++)
		if(!dfn[i])
			tarjan(i);
	for(int i=1;i<=n;i++)
		for(int j=0;j<A[i].size();j++)
			if(fa[i]!=fa[A[i][j]]){
				G[fa[i]].push_back(fa[A[i][j]]);
				RG[fa[A[i][j]]].push_back(fa[i]);;
			}
	q.push(fa[1]);
	memset(f,-127/2,sizeof(f));
	memset(vis,0,sizeof(vis));
	f[fa[1]]=size[fa[1]];   
	vis[fa[1]]=1;	
	while(!q.empty()){
		int x=q.front();
		q.pop();
		for(int i=0;i<G[x].size();i++){
			int u=G[x][i];
			if(f[u]<f[x]+size[u]){
				f[u]=f[x]+size[u];
				if(!vis[u]){
					vis[u]=1;
					q.push(u);
				}
			}
		}
		vis[x]=0;
	}
	q.push(fa[1]);
	memset(g,-127/2,sizeof(g));
	memset(vis,0,sizeof(vis));
	g[fa[1]]=size[fa[1]];
	while(!q.empty()){
		int x=q.front();
		q.pop();
		for(int i=0;i<RG[x].size();i++){
			int u=RG[x][i];
			if(g[u]<g[x]+size[u]){
				g[u]=g[x]+size[u];
				if(!vis[u]){
					vis[u]=1;
					q.push(u);
				}
			}
		}
		vis[x]=0;
	}
	int ans=size[fa[1]];
	for(int i=1;i<=n;i++){
		if(fa[i]!=i)
			continue;
		for(int j=0;j<G[i].size();j++){
			int u=G[i][j];
			if(g[i]+f[fa[u]]-size[fa[1]]>ans)
				ans=g[i]+f[fa[u]]-size[fa[1]];
		}
	}
	printf("%d\n",ans);
	//for(int i=1;i<=n;i++)
	//	printf("%d\n",g[i]);
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值