HEU机器学习基础0.03

HEU机器学习基础0.03

线性回归Extra


前言

Preview
based on Andrew Ng

多元线性回归multiple linear regression

有多个输入特征的线性回归模型
x j x_j xj = j t h j^{th} jth feature
n = number of features
x ⃗ i \vec{x}^{i} x i = features of i t h i^{th} ith training example
x j x_j xj = value of feature j in i t h i^{th} ith training example

初始模型single linear regression model

f w , b ( x ) = w x + b f_{w,b}(x) = wx+b fw,b(x)=wx+b

multiple linear regression

f w , b ( x ) = w 1 x 1 + w 2 x 2 + . . . + w n x n + b f_{w,b}(x) = w_1x_1+w_2x_2+...+w_nx_n+b fw,b(x)=w1x1+w2x2+...+wnxn+b

向量化vectorization

基本步骤

w ⃗ \vec{w} w = [ w 1 w_1 w1 w 2 w_2 w2 w 3 w_3 w3 w n w_n wn]
b = constant
x ⃗ \vec{x} x = [ x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x n x_n xn]

减少变量数量,加快运行速度

Final result

f w , b ( x ⃗ ) = w ⃗ ⋅ x ⃗ + b f_{w,b}(\vec{x}) = \vec{w}\cdot\vec{x}+b fw,b(x )=w x +b

Previous notationVector notation
Parameter w 1 w_1 w1 w n w_n wn w ⃗ \vec{w} w = [ w 1 w_1 w1 w n w_n wn]
Model f w , b ( x ) = w 1 x 1 + w 2 x 2 + . . . + w n x n + b f_{w,b}(x) = w_1x_1+w_2x_2+...+w_nx_n+b fw,b(x)=w1x1+w2x2+...+wnxn+b f w , b ( x ⃗ ) = w ⃗ ⋅ x ⃗ + b f_{w,b}(\vec{x}) = \vec{w}\cdot\vec{x}+b fw,b(x )=w x +b
Cost function J ( w 1 , . . . , w n , b ) J(w_1, ... ,w_n, b) J(w1,...,wn,b) J ( w ⃗ , b ) J(\vec{w},b) J(w ,b)
Gradient descentrepeat{ w j = w j − α ∂ ∂ w j ∂ J ( w 1 , w 2 , . . . w n , b ) w_j = w_j - \alpha\frac{\partial}{\partial w_j}\partial J(w_1,w_2,...w_n,b) wj=wjαwjJ(w1,w2,...wn,b) b = b − α ∂ ∂ b ∂ J ( w 1 , w 2 , . . . w n , b ) b = b - \alpha\frac{\partial}{\partial b}\partial J(w_1,w_2,...w_n,b) b=bαbJ(w1,w2,...wn,b)}repeat{ w j = w j − α ∂ ∂ w j ∂ J ( w ⃗ , b ) w_j = w_j - \alpha\frac{\partial}{\partial w_j}\partial J(\vec w,b) wj=wjαwjJ(w ,b) b = b − α ∂ ∂ b ∂ J ( w ⃗ , b ) b = b - \alpha\frac{\partial}{\partial b}\partial J(\vec w, b) b=bαbJ(w ,b)}

特性缩放Feature Scaling

加快梯度下降速度(加快运算)
通常来说:大特征对应小参数,小特征对应大参数
在这里插入图片描述
使用特性缩放,使参数下降的过程更长,避免出现梯度下降过快导致的超调。

如何特性缩放:类似标准化(归一化)normalization

在这里插入图片描述

均值归一化 Mean normalization

使用均值进行归一化处理
在这里插入图片描述

Z-Score 归一化 Z-score normalizaation

参考正态分布
使用标准差进行归一化处理
在这里插入图片描述

特性缩放的目的

调整特征的量级,以匹配学习率,避免出现超调或梯度下降过慢的情况。
一般希望在 − 1 ≤ x j ≤ 1 -1 \leq x_j \leq 1 1xj1 − 0.1 ≤ x j ≤ 0.1 -0.1 \leq x_j \leq 0.1 0.1xj0.1
这个数量级范围
在这里插入图片描述

检查梯度下降是否收敛

绘制学习曲线Learning curve
(#iteration,J( w ⃗ \vec w w ,b))
横坐标:#iteration 迭代次数
纵坐标:代价函数J( w ⃗ \vec w w ,b)
在这里插入图片描述

判断是否收敛Convergence

设参数 ϵ \epsilon ϵ= 1 0 − 3 10^{-3} 103,如果单次迭代的代价函数变化率小于 ϵ \epsilon ϵ,则表示已经收敛。

学习率调试

Situation1:
在这里插入图片描述
α \alpha α过大
在这里插入图片描述

Situation 2:
在这里插入图片描述
α \alpha α过大 或 代码错误( w 1 w_1 w1= w 1 w_1 w1 - α \alpha α d 1 d_1 d1, 注意是减法)

多项式回归

f w ⃗ , b ( x ) = w 1 ⋅ x 1 + w 2 ⋅ x 2 + . . . + w n ⋅ x n f_{\vec w, b}(x)=w_1 \cdot x^1+w_2\cdot x^2+...+w_n \cdot x^n fw ,b(x)=w1x1+w2x2+...+wnxn

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江弋南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值