JEI电子驱动与控制 Part3(上)

Part3 控制 Control

在这里插入图片描述

3.1 基本回顾

定义

ConceptDefinition
SystemAn arrangement of components in such a manner as to form an entire unit
Control SystemA system where the components are connected so as to regulate itself or another system
Input (excitation)The stimulus or excitation applied to a control system.
Output (response)The response from a system. Often the variable which is to be controlled.
Plant (or process)System under control. Cause and effect between input-output relationship.在这里插入图片描述

系统动力学 System Dynamics(SD)

一种统一的建模和表示方法线性系统的动态行为。
用常微分方程(ODE)描述系统的所有组成部分
对于不同的能量域,可以用通用形式的ODE来描述每个子系统
Common form of the ODE
τ d y d t + y = u ( t )   u ( t )  是系统输入 y ( t )  是系统输出 τ 是一个系统参数(不是关于时间 t 的变量  t i m e − c o n s t a n t ) \tau \frac{dy}{dt} + y = u(t)\\ \ \\ u(t)\ 是系统输入\\ y(t) \ 是系统输出\\ \tau 是一个系统参数(不是关于时间t的变量 \ time -constant) τdtdy+y=u(t) u(t) 是系统输入y(t) 是系统输出τ是一个系统参数(不是关于时间t的变量 timeconstant
Block diagrams用系统框图来表示输入输出之间的关系

System identificaction: 用输入/输出去预测系统
Frequency response:系统在不同频率下的表现

线性系统原理 Linear System Theory

A generalised method for describing the dynamic response of systems of ODEs with constant coefficients independent of the energy domain.
描述与能量域无关的常系数ODE系统动态响应的一种广义方法Standard form
在这里插入图片描述

线性系统:满足叠加原理齐次性原理

  • Superposition叠加性:当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和。
  • Homogenneity均匀性(齐次性):当输入信号增大若干倍时,输出也相应增大同样的倍数。(输入与输出成比例)

反馈控制原理 Feedback Control Theory

开环控制系统闭环控制系统
根据系统的经验选择输入,以获得所需的输入输出测量信号反馈到控制器,改变系统,以确保满足预先规定的输出要求
简单,成本低,相当可靠复杂,成本高于开环系统
无反馈纠正,可能不准确由于反馈,系统可能不稳定
对变化非常敏感可以应对干扰

实际控制问题的分析步骤

在这里插入图片描述

  1. Choose sensors to measure the plant output(s)
  2. Choose actuator(s) to drive the plant
  3. Develop the plant, actuator and sensor equations (modelling)
  4. Design a controller based on the models and the control criteria,
  5. Evaluate the design analytically through simulation,
  6. Test the controller on the physical system, and
  7. If the physical tests are unsatisfactory, iterate(迭代) the design steps.

在这里插入图片描述

3.2 动态系统设计 MODELLING OF DYNAMIC SYSTEMS

数学系统可以是线性linear非线性nonlinear的;时变time-variant时不变time-invariant

线性系统 Linear systems

所有线性系统满足 叠加定理 principle of superposition
在这里插入图片描述

非线性系统 Non-linear systems

用非线性方程描述的系统
例如:
在这里插入图片描述

非线性系统的线性化 Linearization of non-linear systems
线性近似 Linear approximate
在这里插入图片描述
( d f d x ) x 0 (\frac{df}{dx})_{x_0} (dxdf)x0 is the slope of targent at 0.

3.3 传递函数与程序框图 TRANSFER FUNCTIONS AND BLOCK DIAGRAMS

3.3.1 传递函数 Transfer Function

定义:传递函数 transfer function 是 拉普拉斯转换后的输出与输入之比(认为是0初始条件)

会给出拉氏变换表,根据要求选择输入信号进行变换即可

拉氏变换定理
在这里插入图片描述

3.3.2 动态系统的拉氏变换 Laplace transforms of dynamic systems

在这里插入图片描述
0初始条件的系统动力学方程(标准微分方程形式),根据经典控制理论转移至频域表达
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3.3 方块图

在这里插入图片描述
附:所谓闭环回路开环传递函数,即指从系统输入到反馈回路终点的传递函数(从输入到比较点为止);也就是取消系统原有的输出点,将反馈回路的终点设为输出点。

3.4 动态系统响应 RESPONSE OF DYNAMIC SYSTEMS

在这里插入图片描述

3.4.1 极点与零点 Poles and Zeros

在这里插入图片描述
零点Zeros: numerator roots 分子根(分子多项式取0的根)
极点Poles: demoninator roots 分母根
特征方程Characteristic equation(CE): denominator polynomial equated to zero 分母多项式取0的方程

在这里插入图片描述
零点用 ◯ \bigcirc , 极点用 × \times ×

3.4.2 一阶系统 First order systems

在微分方程模型中,系统的阶数等于导数的最高次幂。
First order :  a 1 d y d t + a 0 y = b 0 u G ( s ) = Y ( s ) U ( s ) = b 0 a 1 s + a 0 = b 0 / a 0 ( a 1 / a 0 ) s + 1 ≡ K p τ p s + 1 K p  is system gain系统增益——输入到输出的变化 τ p is system time constant系统时间常数——决定系统对输入的响应时间 \begin{aligned} \text{First order : }a_1 \frac{dy}{dt}+a_0y = b_0 u\\ G(s) &= \frac{Y(s)}{U(s)} = \frac{b_0}{a_1 s + a_0}\\ &=\frac{b_0/a_0}{(a_1/a_0)s+1} \\ &\equiv\frac{K_p}{ \tau_ps+1}\\ &K_p\text{ is system gain系统增益——输入到输出的变化}\\ &\tau_p \text{is system time constant系统时间常数——决定系统对输入的响应时间}\\ \end{aligned} First order : a1dtdy+a0y=b0uG(s)=U(s)Y(s)=a1s+a0b0=(a1/a0)s+1b0/a0τps+1KpKp is system gain系统增益——输入到输出的变化τpis system time constant系统时间常数——决定系统对输入的响应时间

3.4.2.1 脉冲响应 Impulse response

The Laplace transform of an Impulse function is 1 ——  R ( s ) = 1 \text{The Laplace transform of an Impulse function is 1 ——} \ R(s) = 1 The Laplace transform of an Impulse function is 1 —— R(s)=1
G ( s ) = C ( s ) 1 = 1 T s + 1 = C ( s )   If the system has a gain K :  G ( s ) = C ( s ) = K T s + 1 \begin{aligned} G(s) &= \frac{C(s)}{1} = \frac{1}{Ts+1} \\ &= C(s)\\ \ \\ \text{If the system has a gain K : } G(s) = C(s) = \frac{K}{Ts+1} \end{aligned} G(s) If the system has a gain K : G(s)=C(s)=Ts+1K=1C(s)=Ts+11=C(s)
已知系统输出 (响应) 后想要求得瞬态响应Transient Response,则需要进行拉普拉斯逆变换,将频域转换到时域:
A e − α t ⇔ A s + α   c ( t ) = K T ( e − t / T )   t = 0   ,   c ( t ) = K / T t → ∞   ,   c ( t ) → 0 \begin{aligned} Ae^{-\alpha t} &\Leftrightarrow \frac{A}{s+\alpha}\\ \ \\ c(t) &= \frac{K}{T}(e^{-t/T})\\ \ \\ t &= 0\ , \ c(t) = K/T\\ t &\rightarrow \infin\ , \ c(t) \rightarrow 0\\ \end{aligned} Aeαt c(t) tts+αA=TK(et/T)=0 , c(t)=K/T , c(t)0

图为 c ( t ) = K T ( e − t / T ) c(t) = \frac{K}{T}(e^{-t/T}) c(t)=TK(et/T)函数图像
在这里插入图片描述
瞬态响应 为 指数衰变decaying exponectial
衰变的时间越长,说明响应速度越慢

此处引入时间常数Time constant T(in seconds)
表示 指数衰变至 e − t / T = e − 1 = 0.368 的值 e^{-t/T}=e^{-1}=0.368的值 et/T=e1=0.368的值
标准归一化后的一阶环节(如:simple lag)的时间常数就是T
s直接表示衰变速度(响应速度)

Time tOutput %of initial value K/T
t = 0100%
t = T e − 1 ≈ 36.8 % e^{-1} \approx 36.8\% e136.8% (36.8% of K/T)
t = 2T e − 2 ≈ 13.5 % e^{-2} \approx 13.5\% e213.5%(13.5% of K/T)
t = 3T e − 3 ≈ 5 % e^{-3} \approx 5\% e35%(5% of K/T)
t = 4T e − 4 ≈ 2 ( 精确为 1.8 ) % e^{-4} \approx 2(精确为1.8)\% e42(精确为1.8)%(2% of K/T)—— T h e   s e t t l i n g   t i m e The\ settling\ time The settling time
3.4.2.2 阶跃响应 Step response

The Laplace transform of an Impulse function is 1 ——  R ( s ) = 1 / s \text{The Laplace transform of an Impulse function is 1 ——} \ R(s) = 1/s The Laplace transform of an Impulse function is 1 —— R(s)=1/s

G ( s ) = 1 T s + 1   If the system has a gain K :  O u t p u t   C ( s ) = K s ( T s + 1 )   = K 1 s + K 2 T s + 1   = K s + K T T s + 1 with the transform:  K u ( t ) = K s   ;   K e − α t = K s + α Finally:  c ( t ) = K ( 1 − e − t / T ) \begin{aligned} G(s) &= \frac{1}{Ts+1}\\ \ \\ \text{If the system has a gain K : } Output\ C(s) &= \frac{K}{s(Ts+1)} \\ \ \\ &=\frac{K_1}{s}+\frac{K_2}{Ts+1}\\ \ \\ &=\frac{K}{s}+\frac{KT}{Ts+1}\\ \text{with the transform: }Ku(t) = \frac{K}{s} \ ; \ Ke^{-\alpha t} = \frac{K }{s+ \alpha}\\ \text{Finally: } c(t) = K(1-e^{-t/T}) \end{aligned} G(s) If the system has a gain K : Output C(s)  with the transform: Ku(t)=sK ; Keαt=s+αKFinally: c(t)=K(1et/T)=Ts+11=s(Ts+1)K=sK1+Ts+1K2=sK+Ts+1KT

t = 0   ,   c ( t ) = 0 t → ∞   ,   c ( t ) → K s t e a d y 稳态输出 \begin{aligned} t &= 0\ , \ c(t) = 0\\ t &\rightarrow \infin\ , \ c(t) \rightarrow K_{steady}稳态输出\\ \end{aligned} tt=0 , c(t)=0 , c(t)Ksteady稳态输出
在这里插入图片描述
瞬态响应 为 指数衰变decaying exponectial
衰变的时间越长,说明响应速度越慢

此处引入时间常数Time constant T(in seconds)
表示 指数衰变至 e − t / T = e − 1 = 0.368 e^{-t/T}=e^{-1}=0.368 et/T=e1=0.368的值,此时 c ( t ) = 1 − e − 1 = 1 − 0.368 = 0.632 c(t) = 1 - e^{-1} = 1-0.368 = 0.632 c(t)=1e1=10.368=0.632
标准归一化后的一阶环节(如:simple lag)的时间常数就是T
s直接表示衰变速度(响应速度)

由于是阶跃信号,需要考虑阶跃前的信号强度。如:阶跃发生前的系统输出为5,则阶跃完成后的输出为 5 + K,即 c ( t ) = 5 + K   ,   t → ∞ c(t) = 5+K \ , \ t \rightarrow \infin c(t)=5+K , t

3.4.2.3 相应与极点位置的关系\稳定性 Stability(intro)

以 simple lag 为例:
在这里插入图片描述
稳定性Stability: 如果-1/T >0极点位于s平面瞬态 e − t / T e^{-t/T} et/T 的右半部分,则 c(t) 随着t的增加而稳定增长
→ \rightarrow 系统不稳定,无用
→ \rightarrow 系统极点需要在 s-plane 的左半平面

响应速度Speed of response: 减小时间常数T

3.4.3 二阶系统 Second order systems

Second order :  a 2 d 2 y d t 2 + a 1 d y d t + a 0 y = b 0 u G ( s ) = Y ( s ) U ( s ) = b 0 a 2 s 2 + a 1 s + a 0 = b 0 / a 2 s 2 + ( a 1 / a 2 ) s + ( a 0 / a 2 ) ≡ K ω n 2 s 2 + 2 ζ ω n s + ω n 2 K  is system gain系统增益——输入到输出的变化 ω n  is the natural frequency of oscillation震荡的固有频率 ζ  is a measure of damping in the system 系统阻尼比 \begin{aligned} \text{Second order : }a_2 \frac{d^2y}{dt^2}+a_1 \frac{dy}{dt}+a_0y = b_0 u\\ G(s) &= \frac{Y(s)}{U(s)} = \frac{b_0}{a_2s^2+a_1 s + a_0}\\ &=\frac{b_0/a_2}{s^2+(a_1/a_2)s+(a_0/a_2)}\\ &\equiv\frac{K\omega_n^2}{s^2+2\zeta \omega_ns + \omega_n^2}\\ &K\text{ is system gain系统增益——输入到输出的变化}\\ &\omega_n \text{ is the natural frequency of oscillation震荡的固有频率}\\ &\zeta \text { is a measure of damping in the system 系统阻尼比} \end{aligned} Second order : a2dt2d2y+a1dtdy+a0y=b0uG(s)=U(s)Y(s)=a2s2+a1s+a0b0=s2+(a1/a2)s+(a0/a2)b0/a2s2+2ζωns+ωn2Kωn2K is system gain系统增益——输入到输出的变化ωn is the natural frequency of oscillation震荡的固有频率ζ is a measure of damping in the system 系统阻尼比

3.4.3.1 阶跃响应 Step response

单位脉冲信号 Unit step input:  R ( s ) = 1 / s C ( s ) = K ω n 2 s ( s 2 + 2 ζ ω n s + ω n 2 )   = 1 s + A 1 s − p 1 + A 2 s − p 2 拉氏变换逆变换到时域:  c ( t ) = 1 + A 1 e p 1 t + A 2 e p 2 t p 1 和 p 2 是该系统的极点(也就是特征方程的根) A 1 = − K ζ 2 ζ 2 − 1 − K 2 A 2 = K ζ 2 ζ 2 − 1 − K 2 \begin{aligned} \text{单位脉冲信号 Unit step input: }R(s) = 1/s\\ C(s) &= \frac{K \omega_n^2}{s(s^2+2\zeta \omega_ns + \omega_n^2)} \\ \ \\ &=\frac{1}{s} + \frac{A_1}{s-p_1} + \frac{A_2}{s-p_2}\\ \text{拉氏变换逆变换到时域: }c(t) = 1+A_1e^{p_1t}+A_2e^{p_2t}\\ p1 和 p2 是该系统的极点(也就是特征方程的根)\\ A_1 = -\frac{K \zeta}{2 \sqrt{\zeta ^2 -1 }} - \frac{K}{2}\\ A_2 = \frac{K \zeta}{2 \sqrt{\zeta ^2 -1 }} - \frac{K}{2} \end{aligned} 单位脉冲信号 Unit step input: R(s)=1/sC(s) 拉氏变换逆变换到时域c(t)=1+A1ep1t+A2ep2tp1p2是该系统的极点(也就是特征方程的根)A1=2ζ21 Kζ2KA2=2ζ21 Kζ2K=s(s2+2ζωns+ωn2)Kωn2=s1+sp1A1+sp2A2

Damping ratioTypePolesGraph
ζ > 1 \zeta > 1 ζ>1over damped 过阻尼 p 1 , 2 = − ζ ω n ± ζ 2 − 1 p_{1,2} = -\zeta \omega_n \pm \sqrt{\zeta^2 -1} p1,2=ζωn±ζ21 在这里插入图片描述
ζ = 1 \zeta = 1 ζ=1critically damped临界阻尼 − ω n -\omega_n ωn在这里插入图片描述
ζ < 1 \zeta < 1 ζ<1under damped欠阻尼 p 1 , 2 = − ζ ω n ± j ω n 1 − ζ 2 p_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2} p1,2=ζωn±jωn1ζ2 (共轭复根)在这里插入图片描述
3.4.3.2 关于二阶系统的一些计算
几何法阻尼比 ζ \zeta ζ相关计算

在这里插入图片描述
欠阻尼系统的极点表示如图所示

ϕ \phi ϕ 为极点到负实轴的夹角
易得 阻尼比damping ratio : c o s ϕ = ζ ω n / ω n = ζ cos \phi = \zeta \omega_n/\omega_n = \zeta cosϕ=ζωn/ωn=ζ

  • ϕ = 4 5 ∘ →   ζ = 2 / 2 = 0.707 \phi=45^\circ \rightarrow \ \zeta=\sqrt2/2 =0.707 ϕ=45 ζ=2 /2=0.707
  • ϕ = 6 0 ∘ →   ζ = 1 / 2 = 0.5 \phi=60^\circ \rightarrow \ \zeta= 1/2 =0.5 ϕ=60 ζ=1/2=0.5

特征方程的根形成半径为 ω n \omega_n ωn 的半圆,角 ϕ \phi ϕ 由式给出:
t a n ϕ = 1 − ζ 2 ζ ϕ = t a n − 1 ( 1 − ζ 2 ζ ) tan \phi = \frac{\sqrt{1-\zeta^2}}{\zeta}\\ \phi = tan^{-1}(\frac{\sqrt{1-\zeta^2}}{\zeta}) tanϕ=ζ1ζ2 ϕ=tan1(ζ1ζ2 )

ζ \zeta ζ对阶跃响应的影响

C ( s ) = K ω n 2 s ( s 2 + 2 ζ ω n s + ω n 2 ) C(s) = \frac{K \omega_n^2}{s(s^2+2\zeta \omega_ns + \omega_n^2)} C(s)=s(s2+2ζωns+ωn2)Kωn2
在这里插入图片描述

%%请根据实际情况修改参数
K = 1;
w_n = 1;
z = 0.1;
num = K*w_n;
den = [1 2*z*w_n w_n^2];
step(num,den);
拉普拉斯逆变换的分式变换

后面说到根轨迹法时会详细解释
现在先上例子: G ( s ) = 2 s 2 + 3 s + 2 = 2 ( s + 1 ) ( s + 2 )   输入单位阶跃信号 :  C ( s ) = 2 s ( s + 1 ) ( s + 2 ) = K 1 s + K 2 s + 1 + K 3 s + 2 G(s) = \frac{2}{s^2+3s+2} = \frac{2}{(s+1)(s+2)}\\ \ \\ \text{输入单位阶跃信号 : } C(s) = \frac{2}{s(s+1)(s+2)} = \frac{K_1}{s}+\frac{K_2}{s+1}+\frac{K_3}{s+2} G(s)=s2+3s+22=(s+1)(s+2)2 输入单位阶跃信号 : C(s)=s(s+1)(s+2)2=sK1+s+1K2+s+2K3

图解法Graphical method:
在这里插入图片描述
在这里插入图片描述

3.4.3.3 动态响应图像的分析

Dynamic performance criteria ( ζ \zeta ζ < 1)
在这里插入图片描述

  • 峰值时间 Peak time T p T_p Tp
    通常指系统单位阶跃响应曲线超过其稳态值而达到第一个峰值所需要的时间
    对于欠阻尼二阶系统单位阶跃响应来说,上升时间 T p = π ω n 1 − ζ 2 = π ω d T_p = \frac{\pi}{\omega_n \sqrt{1- \zeta^2 }} = \frac{\pi}{\omega_d} Tp=ωn1ζ2 π=ωdπ
    ω d \omega_d ωd 表示 震荡角频率
  • 超调量 Percentage overshoot P O PO PO
    最大超调量在 T p T_p Tp 同时发生 ( d c d t = 0 \frac{dc}{dt}=0 dtdc=0)
    P O = C m a x − C f i n a l C f i n a l ∗ 100 %   = e − π ζ 1 − ζ 2 ∗ 100 % \begin{aligned}PO &= \frac{C_{max}-C_{final}}{C_{final}}*100\%\\ \ \\ &= e^{\frac{-\pi \zeta}{\sqrt{1- \zeta^2}}}*100\% \end{aligned} PO =CfinalCmaxCfinal100%=e1ζ2 πζ100%
  • 沉降时间 Settling time T s T_s Ts
    当运输入为阶跃信号时,运放的输出响应进入并保持在规定误差带所需的时间
    二阶欠阻尼系统的沉降时间: T = 1 ζ ω n T = \frac{1}{ \zeta \omega_n} T=ζωn1
    T s = 3 T ( 5 % )    T s = 4 T ( 2 % ) T_s = 3T (5\%) \ \ T_s = 4T (2\%) Ts=3T(5%)  Ts=4T(2%)
  • 上升时间 Rise time T r T_r Tr
    响应曲线从零时刻 t = 0 t=0 t=0 到首次达到稳态值的时间
    通常定义为响应曲线从稳态值的10% 上升到稳态值 90% 所需的时间

3.4.4 附加系统极点Additional system poles

系统额外增加一个含极点的环节
在这里插入图片描述
没有这个额外环节的话,系统的闭环传递函数为:
G ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 G(s) = \frac{ \omega_n^2}{s^2+2\zeta \omega_ns + \omega_n^2} G(s)=s2+2ζωns+ωn2ωn2
加上这个额外环节之后:
G ( s ) = C ( s ) R ( s ) = ω n 2 ( 1 + T a s ) ( s 2 + 2 ζ ω n s ) + ω n 2 = ω n 2 T a s 3 + ( 1 + 2 ζ ω n T a ) s 2 + 2 ζ ω n s + ω n 2 G(s)=\frac{C(s)}{R(s)} = \frac{\omega_n^2}{(1+T_as)(s^2+2\zeta \omega_ns) + \omega_n^2}\\ =\frac{\omega_n^2}{T_as^3+(1+2 \zeta \omega_n T_a)s^2+2\zeta \omega_ns + \omega_n^2} G(s)=R(s)C(s)=(1+Tas)(s2+2ζωns)+ωn2ωn2=Tas3+(1+2ζωnTa)s2+2ζωns+ωn2ωn2

ζ = 0.5   a n d   ω n = 1 \zeta = 0.5 \ and \ \omega_n = 1 ζ=0.5 and ωn=1

附加极点的影响:

  1. 减慢系统响应速度
  2. 增加Rise Time T p T_p Tp
  3. 增加Overshoot P O PO PO

在这里插入图片描述

3.4.5 Summary

在这里插入图片描述

3.5 稳定性 Stability

在这里插入图片描述

3.5.1 稳定性判定

n阶系统的响应: G ( s ) = C ( s ) R ( s ) = a m s m + a m − 1 s m − 1 + . . . + a 1 s 1 + a 0 b n s n + b n − 1 s n − 1 . . . + b 1 s 1 + b 0   对于单位阶跃信号输入Unit step input: C ( s ) = 1 s ( s − z m ) ( s − z m − 1 ) . . . ( s − z 0 ) ( s − p n ) ( s − p n − 1 ) . . . ( s − p 0 ) z 表示 zeros 零点;p 表示 poles 极点   rewrite: C ( s ) = A 0 s + A 1 ( s − p 0 ) + A 2 ( s − p 1 ) + A n − 1 ( s − p n ) 转换到时域: c ( t ) = A 0 + A 1 e p 0 t + A 2 e p 2 t + . . . + A n + 1 e p n t   \begin{aligned} \text{n阶系统的响应:}G(s) &= \frac{C(s)}{R(s)} = \frac{a_m s^m + a_{m-1}s^{m-1}+ ...+a_1s^1 +a_0}{b_n s^n + b_{n-1}s^{n-1}... + b_1s^1 + b_0}\\ \ \\ \text{对于单位阶跃信号输入Unit step input:}C(s) &= \frac{1}{s}\frac{(s-z_m)(s-z_{m-1})...(s-z_0)}{(s-p_n)(s-p_{n-1})...(s-p_0)}\\ &\text{z 表示 zeros 零点;p 表示 poles 极点}\\ \ \\ \text{rewrite:}C(s) &= \frac{A_0}{s}+\frac{A_1}{(s-p_0)}+\frac{A_2}{(s-p_1)}+\frac{A_{n-1}}{(s-p_n)}\\ \text{转换到时域:}c(t) &= A_0+A_1e^{p_0t}+A_2e^{p_2t} +...+A_{n+1}e^{p_nt}\\ \ \\ \end{aligned} n阶系统的响应:G(s) 对于单位阶跃信号输入Unit step inputC(s) rewriteC(s)转换到时域:c(t) =R(s)C(s)=bnsn+bn1sn1...+b1s1+b0amsm+am1sm1+...+a1s1+a0=s1(spn)(spn1)...(sp0)(szm)(szm1)...(sz0)表示 zeros 零点;表示 poles 极点=sA0+(sp0)A1+(sp1)A2+(spn)An1=A0+A1ep0t+A2ep2t+...+An+1epnt
观察易得 c(t)是正指数函数,指数为负数时收敛 \text{观察易得 c(t)是正指数函数,指数为负数时收敛} 观察易得 c(t)是正指数函数,指数为负数时收敛
如果 p 的实数部分为正,则系统稳定 c → A 0 \text{如果 p 的实数部分为正,则系统稳定} c \rightarrow A_0 如果 p 的实数部分为正,则系统稳定cA0
如果 p 的实数部分为负,则系统为正数 c → ∞ \text{如果 p 的实数部分为负,则系统为正数} c \rightarrow \infin 如果 p 的实数部分为负,则系统为正数c

例:在这里插入图片描述

3.5.2 劳斯判据 Routh-Hurwitz stability criterion

参考:https://blog.csdn.net/qq_34539334/article/details/119576387
https://blog.csdn.net/qq_45049500/article/details/109785967

3.5.2.1 稳定性的必然条件(使用劳斯判据的前提)

特征方程各项系数均为正数,若系数存在负数,则系统一定是不稳定的

3.5.2.2 使用劳斯判据的步骤
  1. 得到系统的闭环传函并整理为标准形式(从高到低按阶展开)
  2. 得到系统的特征方程
  3. 将特征方程以劳斯矩阵形式写出
  4. 使用劳斯判据进行稳定性判定

在这里插入图片描述
列成下图形式:(劳斯表)
在这里插入图片描述
对于图中未知数,如 b 1 、 b 2 b_1、b_2 b1b2,进行如下计算:
在这里插入图片描述
重复这个步骤直到只剩 0
对于最后两行(即图中的 s 1 、 s 0 s^1、s^0 s1s0),第二个元素为0即可( g 1 、 h 1 g_1、h_1 g1h1后面的元素)

3.5.2.3 劳斯判据

利用劳斯表分析系统的稳定性,分为三种情况。

  1. 第一列的系数都不为零,且都为正数。
    如果第一列的系数都不为零,且都为正数,则系统是稳定的。
    如果第一列的系数存在负数,系统不稳定,并且不稳定根的个数等于劳斯表第一列系数正负号改变的次数。

  2. 劳斯表某行的第一项为零,而本行中其余各项不全为零。
    当劳斯表某一行第一项为零,其余项不全为零,可用一个很小的正数 ϵ   ( ϵ → 0 + ; ϵ ≈ 1 ∗ 1 0 − 6 ) \epsilon \ ( \epsilon \rightarrow 0^+ ; \epsilon \approx 1*10^{-6}) ϵ (ϵ0+;ϵ1106) 去代替这个等于零的项。
    然后在按照上面的方法去求劳斯表中的其余项,求完后再判断系统的稳定性,以及不稳定根个数。

  3. 劳斯表某行所有系数均为零。
    说明在复平面内存在着以原点为对称的特征根(系统在s平面的右半部分或虚轴上有极点)。形如 p = ± δ , p = ± j ω , p = ± δ ±   j ω p = \pm \delta , p = \pm j \omega, p = \pm \delta \pm \ j\omega p=±δ,p=±,p=±δ±  等。
    显然系统是不稳定的。

这种情况下会出题让你求它的不稳定根,甚至让你去补全这个不稳定系统的劳斯表。方法如下:

共轭根可以由辅助方程求得,这个辅助方程由全零行的上一行去列,解得的值就是不稳定的根。

全零行的系数可以由辅助函数求导后的系数得到,然后再去继续计算补全劳斯表。

例子:在这里插入图片描述
在这里插入图片描述

3.6 稳态误差 Steady state error E(s)

系统从一个稳态过渡到新的稳态,或系统受扰动作用又重新平衡后,系统出现的偏差
In frequency domain   E ( s ) = R ( s ) − C ( s ) C ( s ) = G ( s ) E ( s ) R ( s ) − E ( s ) = G ( s ) E ( s )   ⇒ E ( s ) = R ( s ) 1 + G ( s )     In time domain    e ( t ) = r ( t ) − c ( t ) w h e r e   r ( t )   r e f e r e n c e c ( t )   o u t p u t e ( t )   e r r o r   e ( ∞ ) = lim ⁡ t → ∞ e ( t ) = lim ⁡ t → ∞ ( r ( t ) − c ( t ) )   T i m e   d o m a i n   ⇔   F r e q u e n c y   d o m a i n lim ⁡ t → ∞ y ( t ) = lim ⁡ s → ∞ [ s Y ( s ) ] w h i c h   i s   : lim ⁡ t → ∞ e ( t ) = lim ⁡ s → ∞ [ s E ( s ) ] The Steady state error:   e s s = lim ⁡ t → ∞ y ( t ) = lim ⁡ s → ∞ s R ( s ) 1 + G ( s ) \begin{aligned} \text{In frequency domain } \ E(s) &= R(s)-C(s)\\ C(s) &= G(s)E(s)\\ R(s)-E(s) &= G(s)E(s)\\ \ \\ \Rightarrow E(s) &= \frac{R(s)}{1+G(s)} \ \\ \ \\ \text{In time domain } \ \ e(t) &= r(t)-c(t)\\ where \ &r(t) \ reference \\ &c(t) \ output \\ &e(t) \ error \\ \ \\ e( \infin) = \lim_{t\rightarrow\infty}e(t)&=\lim_{t\rightarrow\infty}(r(t)-c(t))\\ \ \\ Time\ domain \ &\Leftrightarrow \ Frequency \ domain\\ \lim_{t\rightarrow\infty}y(t) &= \lim_{s\rightarrow\infty}[sY(s)]\\ which \ is \ : \lim_{t\rightarrow\infty}e(t) &= \lim_{s\rightarrow\infty}[sE(s)]\\ \text{The Steady state error: } \ e_{ss}=\lim_{t\rightarrow\infty}y(t) &= \lim_{s\rightarrow\infty}\frac{sR(s)}{1+G(s)}\\ \end{aligned} In frequency domain  E(s)C(s)R(s)E(s) E(s) In time domain   e(t)where  e()=tlime(t) Time domain tlimy(t)which is :tlime(t)The Steady state error:  ess=tlimy(t)=R(s)C(s)=G(s)E(s)=G(s)E(s)=1+G(s)R(s) =r(t)c(t)r(t) referencec(t) outpute(t) error=tlim(r(t)c(t)) Frequency domain=slim[sY(s)]=slim[sE(s)]=slim1+G(s)sR(s)
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江弋南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值