mapbox+eCharts路线大数据渲染

eCharts可以实现大量数据迅速渲染,笔者在项目中,测试包含25w余拐点的总计7w余条线渲染总共用时1秒左右,性能表现相当优秀,显示效果也相当不错。 eCharts天生支持mapbox,就像其天生支持百度地图一样,而选择前者的原因是其地图相当漂亮,而且支持相当程度的用户自定义地图。 效果图:...

2018-10-27 16:19:21

阅读数 1824

评论数 3

Web端人脸识别登录

人脸识别技术在当下已经十分成熟,但主要在移动端应用上较为普及,而在Web端并不多见。 本文介绍在Web端人脸识别的简单实现。 Web端人脸识别主要有三个技术思路:1.前端的人脸识别,例如使用Tensorflow.js,2.后台人脸识别,有很多开源或者免费的SDK可以使用,3.前后端结合,即结合...

2018-08-04 20:29:37

阅读数 5786

评论数 26

增强现实之开源AR库——AR.js

AR.js是一个web端的AR库,它完全开源免费,获得了很高的热度。我们要实现的效果如下: 首先去github下载AR.js库: AR.js下载 建议顺带看下作者给出的介绍。介绍里给出一个示例,我们在此示例的源码进行分析并尝试修改示例中的三维模型。 解压缩后目录如下: 示例存th...

2018-04-26 09:12:39

阅读数 9720

评论数 68

ArcGIS 10.2 简化面/线工具Bug修复

ArcGIS简化面工具存在Bug,简化容差无法输入导致简化面功能无法使用。ArcGIS官方公布了这个Bug,表示这是IE浏览器的影像,并给出在10.5中给出修正。 本文通过研究,找到10.2中修复简化面/线工具的方法。 通过创建自定义工具箱方式简单几步便可修复。为了方便参照,本文尽量写的通俗易...

2019-05-14 19:03:43

阅读数 24

评论数 0

数字图像处理中的 channels_first与channels_last

在深度学习中,不同的框架可能对应不同的影像表达,在数据处理时应做相应的转换。 在表示一组彩色图片的问题上,Theano和Caffe使用(样本数,通道数,行或称为高,列或称为宽)通道在前的方式,称为channels_first;而TensorFlow使用(样本数,行或称为高,列或称为宽,通道数)通...

2019-04-16 21:19:34

阅读数 32

评论数 0

Numpy为图片四周补0

在图片卷积操作时,为保持卷积后图片大小仍与原来的大小相同,要在图片四周补0 Numpy提供了补0的函数: padimg= np.pad(img, ((1, 1), (1, 1)), 'constant', constant_values=(0, 0)) 以上假设img为单波段图像变量,即二...

2019-04-13 14:12:05

阅读数 138

评论数 0

mapbox根据多边形选择点要素

Mapbox GL JS 对于按空间选择提供了 queryRenderedfeature函数,但是此函数仅支持按点选和标准矩形的框选,不支持按多边形选择。帮助文档中是这样说的: 查询区域的几何图形:描述边界框的单个点或西南和东北点。 因此,想要查询需要借助其他开源库,本文使用Mapbox推荐的...

2019-04-09 19:14:57

阅读数 74

评论数 0

keras报错:ValueError: `steps_per_epoch=None` is only valid for a generator based on the `keras.utils.S

keras报错: ValueError: `steps_per_epoch=None` is only valid for a generator based on the `keras.utils.Sequence` class. Please specify `steps_per_epoch...

2019-04-08 11:26:11

阅读数 592

评论数 9

cnn实现minist数据集分类

对于minist数据集分类,相较于普通的全连接神经网络,CNN可以得到更高的准确率于更低的loss。在涉及图片的机器学习领域,CNN是目前最佳的解决方案。 CNN对minist数据集分类的代码: import keras from keras.datasets import mnist fr...

2019-04-07 20:44:49

阅读数 118

评论数 0

keras对minist数据集分类

minist数据集分类问题是机器学习入门级问题,本文简单介绍keras在github上给出的minist数据集分类源码及思路。源码如下: '''Trains a simple deep NN on the MNIST dataset. Gets to 98.40% test accuracy ...

2019-04-06 20:17:44

阅读数 65

评论数 0

利用多层感知机实现高分影像中的道路提取

1、数据与目的 实验数据: 分辨率为0.5m的高分遥感影像 实验目的:提取影响中的沥青路面道路 2、影像数据处理 前期数据处理在ENVI中实现。主要包括影像裁剪,道路矢量化,图像二值化。 2-1 数据裁剪 裁剪的目的:在图像中裁剪除两块有代表性的区域,分别作为机器学习的样本和测试数...

2019-04-04 21:44:15

阅读数 51

评论数 0

mapbox创建空白底图

通常在项目中我们会遇到需要空白底图的情况,如专题底图展示,特殊图层的展示等,效果如下图: mapbox可以很方便的创建各种底图包括空白底图,也可改变空白底图的背景色。除底图是空白的,其他交互与正常无异。 以下为展示空白底图的代码: <!DOCTYPE html&g...

2019-03-29 21:35:16

阅读数 41

评论数 0

python读写csv文件

导入csv包 python对csv的读写用到csv包 import csv 读取csv file=csv.reader(open('data/pois.csv','r',encoding='utf-8-sig')) 文件中包含中文时,encoding属性应指定 'utf-8',同时包...

2019-03-29 19:26:28

阅读数 17

评论数 0

使用k均值算法对一维数组聚类(求自然间断点)

一维数组,例如: 班级中学习成绩分布聚类。 K-Means算法可以对多维数据进行聚类,Jenks Natural Breaks和K-Means在一维数据时,完全等价。 它们的目标函数一样,但是算法的步骤不完全相同。K-Means是先设定好K个初始随机点。而Jenks Breaks则是用遍历的...

2019-03-11 16:23:10

阅读数 172

评论数 0

MapBox GL JS动态空间数据渲染策略

动态空间数据是指面向主题的、集成的、动态更新的、持久的空间数据集合。 在开发过程中经常用到动态数据:数据某个属性需要实时更新。例如:全省各地区的污染值数据,污染值数据是实时更新的。 如果我们想按照污染值对地区渲染不同的颜色,并可以在前端查询历史数据,我们无法按照传统的方法,将污染值信息作为一个...

2019-03-05 17:25:05

阅读数 228

评论数 0

Mapbox GL JS 表达式概述

表达式(expressions)是Mapbox GL JS的一个高级功能,它为数据的添加和渲染展示提供了更多的灵活性。 表达式的功能包括: 数据驱动样式:根据一个或多个数据属性指定样式规则。 算术:对源数据进行算术运算,例如执行单位转换计算。 条件逻辑:使用基本的if-then逻辑,例如,...

2019-03-03 10:12:18

阅读数 121

评论数 0

GeoServer 简单几步发布矢量切片服务

GeoServer 是一个功能强大的开源的GIS服务器,其性能相当优越,支持包含wms、wfs、tms在内的多种服务类型,简单服务性能优于ArcGIS Server(仅测10.2版本)。 tms(矢量切片服务),是当下热门的服务器技术,其将矢量数据切片传送到前端,可以提高系统响应速度,并减轻服务...

2019-03-01 19:39:45

阅读数 62

评论数 0

前端页面适应不同分辨率

前端开发要考虑到不同分辨率电脑的页面展示问题,在开发者电脑上的界面在用户电脑上打开可能出现很大变形。 解决方案主要有: 针对不同分辨率用户设置不同的css 使用JS/jQuery动态调整 使用前端框架 简单介绍一下: 针对不同分辨率用户设置不同的css(不推荐) 即针对不同的分辨率,开...

2019-01-19 16:45:10

阅读数 1206

评论数 0

TensorFlow对Fashion MNIST数据集分类

使用TensorFlow可以大大简化模型训练的代码量,仅用几行代码就可以训练一个模型,效果也相当不错。 本教程属于TensorFlow的入门级教程,使用TensorFlow训练模型,以使用模型对服饰图片进行分类。本教程使用命令行操作效果更好。 导入所需要的包 TensorFlow是必要的深度...

2019-01-18 09:12:13

阅读数 232

评论数 0

Python求点到直线的距离

使用之前需引入math库  def getDis(pointX,pointY,lineX1,lineY1,lineX2,lineY2): a=lineY2-lineY1 b=lineX1-lineX2 c=lineX2*lineY1-lineX1*lineY2 ...

2019-01-16 09:40:29

阅读数 922

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭