HDU多校第六场 1007 Getting Your Money Back —— DP + 单调优化

题目链接:点我啊╭(╯^╰)╮

题目大意:

    你的银行账户余额在 [ x , y ] [x,y] [x,y] 范围内
    你需要把它全部取出来,若取 x x x
    若当前余额 ≥ x ≥x x,则耗费 a a a 元取出 x x x
    若当前余额 < x <x x,则耗费 b b b 元,取出失败
    问全取出最坏情况下的最低耗费

解题思路:

    假设 a = = b a == b a==b,那么很明显是二分
    每次取中点,这样一定最贪心
    问题在于 a ≠ b a ≠ b a=b,那么中点就不一定是最贪心的
    所以要枚举中间每一个点


    发现答案与区间长度 y − x y-x yx 有关,与 [ x , y ] [x,y] [x,y] 无关
    但是发现 x = 0 x = 0 x=0 时,当我们取到 1 1 1 时,无论成功失败, 0 0 0 都不需要再取
    如果余额在 [ 1 , y ] [1,y] [1,y] ,当我们取到 2 2 2 时,如果失败,还要取 1 1 1
    所以分两种情况DP:
     d p [ i ] [ 0 ] dp[i][0] dp[i][0] 表示 左端点为 0 0 0 ,长度为 i i i 的答案, d p [ i ] [ 1 ] dp[i][1] dp[i][1] 则表示左端点不为 0 0 0
     d p [ i ] [ 0 ] = m i n ( m a x ( d p [ j − 1 ] [ 0 ] + b , d p [ i − j ] [ 0 ] + a ) ) dp[i][0] = min( max(dp[j-1][0] + b, dp[i-j][0] + a) ) dp[i][0]=min(max(dp[j1][0]+b,dp[ij][0]+a))
     d p [ i ] [ 1 ] = m i n ( m a x ( d p [ j − 1 ] [ 1 ] + b , d p [ i − j ] [ 0 ] + a ) ) dp[i][1] = min( max(dp[j-1][1] + b, dp[i-j][0] + a) ) dp[i][1]=min(max(dp[j1][1]+b,dp[ij][0]+a))


    枚举 j j j ,若 j j j 失败,则范围变为 [ x , j − 1 ] [x,j-1] [x,j1]
    若 j j j 成功,则变为 [ j − j , i − j ] = [ 0 , i − j ] [j-j, i-j] = [0, i-j] [jj,ij]=[0,ij]

    这样的 d p dp dp n 2 n^2 n2 的,很明显看出来区间长度越长,答案越大
    也就是 d p [ i ] [ 0 ] dp[i][0] dp[i][0] 单调不减,那么 m a x max max 里的函数就是一个单调不增,一个单调不减
    所以 m a x ( d p [ j − 1 ] [ 0 ] + b , d p [ i − j ] [ 0 ] + a ) max(dp[j-1][0] + b, dp[i-j][0] + a) max(dp[j1][0]+b,dp[ij][0]+a) ,就是先减后增
    所以对与某一个 i i i ,设其决策点为 j j j
    易得对于 > i >i i 的点,其决策点 j j j 只会往后移
    均摊时间复杂度: O ( n ) O(n) O(n)

核心:DP + 单调优化

#include<bits/stdc++.h>
#define rint register int
#define deb(x) cerr<<#x<<" = "<<(x)<<'\n';
using namespace std;
typedef long long ll;
const int maxn = 2e5 + 5;
int T, x, y, a, b; 
ll dp[maxn][2];

ll slope0(int j, int i){
	return max(dp[j-1][0] + b, dp[i-j][0] + a);
}
ll slope1(int k, int i){
	return max(dp[k-1][1] + b, dp[i-k][0] + a);
}

int main() {
	scanf("%d", &T);
	while(T--){
		scanf("%d%d%d%d", &x, &y, &a, &b);
		int n = y - x;
		dp[0][0] = 0, dp[0][1] = a;
		for(int i=1, j=1, k=1; i<=n; i++){
			while(j<i && slope0(j+1, i) <= slope0(j, i)) j++;
			while(k<i && slope1(k+1, i) <= slope1(k, i)) k++;
			dp[i][0] = slope0(j, i), dp[i][1] = slope1(k, i);
		}
		printf("%lld\n", dp[n][x>0]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值