给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11
(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
思路:对于每一个点来说,以其为端点的路径要么是从左上点下来的,要么是从上点下来的,所以以这点为端点的路径和sum[i][j]=min(sum[i-1][j-1], sum[i-1][j])+这点值,采用动规的方法来做.
(1)从三角形下面往上动规就不用考虑边界了。
(2)直接在给出的三角形上面改,就不用开辟额外空间了。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.empty() || triangle[0].empty()) return 0;
int n=triangle.size();
for(int i=n-2; i>=0; --i)
{
for(int j=0; j<triangle[i].size(); ++j)
{
triangle[i][j]=min(triangle[i+1][j],triangle[i+1][j+1])
+triangle[i][j];
}
}
return triangle[0][0];
}
};