可微和可导的关系,全微分、偏微分、偏导数

请参考:多元函数中可微与可导的直观区别是什么全微分

对于一元函数,可微和可导是一回事

对于多元函数来讲,可微指的是全微分,可导指的是偏导数

偏微分就好比过这一点的一个截面的切线,偏导数就是该切线的斜率

全微分要求过这一点的所有的截面切线(360°无死角),共同所在的平面。

所以偏导数存在不一定存在全微分,但是反过来,如果多元函数可微,就一定可导。

回答: 多元偏微分换序的条件是函数的混合偏导数存在且连续。换序的条件可以通过克莱姆法则来判断,即对于函数 z = f(x, y),如果 f 在某个区域内的所有二阶偏导数连续,且满足以下条件之一: 1. z_{xy} = z_{yx},即混合偏导数相等; 2. z_{xy} z_{yx} 在某个区域内都存在且连续; 那么,可以交换求的顺序,即 z_{xy} = z_{yx}。这意味着在求偏导数时,先对其中一个变量求,再对另一个变量求,或者先对另一个变量求,再对其中一个变量求,得到的结果是相同的。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* [关于偏微分微分总结](https://blog.csdn.net/Hello_Java_s/article/details/102384845)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [一元函数,多元函数,可的含义 多元函数微分的几何意义 多元函数偏 那么为什么有微分 能不能固定两个或者多个条件,多偏微分,哈哈](https://blog.csdn.net/qq_38998213/article/details/83314232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值