230. 二叉搜索树中第K小的元素

给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 个最小的元素。

说明:
你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数。

示例 1:

输入: root = [3,1,4,null,2], k = 1
   3
  / \
 1   4
  \
   2
输出: 1

示例 2:

输入: root = [5,3,6,2,4,null,null,1], k = 3
       5
      / \
     3   6
    / \
   2   4
  /
 1
输出: 3

进阶:
如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k 小的值,你将如何优化 kthSmallest 函数?

方法1:二叉树的中序遍历

class Solution {
public:
    int kthSmallest(TreeNode* root, int k) {
        stack<TreeNode*>s;
        int cnt=0;
        while(root || !s.empty()){
            while(root){
                s.push(root);
                root=root->left;
            }
            TreeNode *temp=s.top();
            s.pop();
            cnt++;
            if(k==cnt) return temp->val;
            root=temp->right;
        }
        return 0;
    }
};

方法2:因为是二叉搜索树,可以快速定位出第k小的元素是在左子树还是右子树,计算出左子树的节点个数总和 cnt:

1、如果k小于cnt+1,说明第k小的元素在左子树中,去左子树中搜索第k小的元素。

2、如果k大于 cnt+1,说明第k小的元素在右子树中,去右子树中搜索第k-cnt-1小的元素。

3、如果k等于 cnt+1,说明当前结点即为所求,返回当前结点值即可。

class Solution {
public:
    int kthSmallest(TreeNode* root, int k) {
        int cnt=count(root->left);
        if(k< cnt+1) return kthSmallest(root->left, k);
        else if(k > cnt+1) return kthSmallest(root->right, k-cnt-1);
        else return root->val;
    }

    int count(TreeNode* root){
        if(!root) return 0;
        return 1+count(root->left) +count(root->right);
    }
};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值