转载自https://blog.csdn.net/jimtrump/article/details/72782852
问题描述:
问题分析:
对于一般的问题,原始解 都能通过一种 蛮力算法,即穷举法的思想得到。这题也不例外。
如果我们,把输入的数组,所有的子列都历遍,并从中找出最大,即可得出我们的算法。也就是版本一。
学习要点:
1、如何寻找代码中的可改进点
2、通过改进代码,得到更有效的算法
3、了解 在线处理 和分而治之思想
int MaxSubSequm1(int A[], int N)
{
int ThisSum, MaxSum = 0;
int i, j, k;
for (i = 0; i < N; i++) { // i 是子列左端的位置
for (j = i; j < N; j++){ //j 是子列右端的位置
ThisSum = 0; //*
for (k = i; k <= j; k++) //*
ThisSum += A[k]; //*
if (ThisSum>MaxSum) // 如果刚得到的子列和更大
MaxSum = ThisSum; // 更新结果
}
}// 循环结束
return MaxSum;
}
然而,
T(N)= O(N^3) 不能让人接受!
思考改进点
1、从历遍的方法? 是不是一定要用 3 个 for ? 每个for 的作用是什么?
2、能不能 通过 动态规划,增加记录的思想,来减少循环?
3、问题的本质是什么?
3、可不可以考虑另外一种解法?
改进点一: 通过改变记录方式,减少一个for 循环
标记有×× 的是可改进的代码
int MaxSubSequm1(int A[], int N)
{
int ThisSum, MaxSum = 0;
int i, j, k;
for (i = 0; i < N; i++) { // i 是子列左端的位置
for (j = i; j < N; j++){ //j 是子列右端的位置
ThisSum +=A[j]; //*
// 对于相同i ,的不同j ,只要在j-1次循环的基础上累加1 项即可
if (ThisSum>MaxSum) // 如果刚得到的子列和更大
MaxSum = ThisSum; // 更新结果
}
}// 循环结束
return MaxSum;
}
算法复杂度 是吓人的 N^2
在线处理思想
改进点二: 深入问题的本质:极端化
其实,我们注意到,
1、如果全部序列都为正数,即最大子列和就是其自身
2、如果最大子列全部为负数,那么最大子列和就是最小的负数
3、根据1,2 我们有,只有当前子列为正数时,才能使最大子列和增大。
于是,我们可以通过抛弃负子列,保证最大子列和递增。当扫描一遍,最大子列和不再递增时,当前的最大子列和即为我们的解。
在线处理
在线 的意思是指每输入一个数据就进行 即是处理 ,在任何一个地方终止输入,算法都能能正确给出当前解
int MaxSubseqSum4(int A[], int N)
{
int ThisSum, MaxSum;
int i;
ThisSum = MaxSum = 0;
for (i = 0; i < N; i++){
ThisSum += A[i];//向右累加
if (ThisSum>MaxSum)
MaxSum = ThisSum; // 发现更大和则更新当前结果
else if (ThisSum < 0) // 如果当前子列和为负数
ThisSum = 0; // 则不可能使后面部分和增大,抛弃之
}
return MaxSum;
}
#另一种思想:分而治之
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值,注计算机会自动把满足三目表达式的看做一个整体 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和,注:递归算法经过return会挑出当前递归,返回上一层递归 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}
例如:
T(N)=2*T(N/2)+c*N T(1)=O(1)
=2*[2*T(N/2^2)+C*N/2]+C*N
=2^k*O(1)+C*k*N 其中N/2^k=1
=O(NlogN)