哈夫曼树是一种重要的数据结构,用于压缩和编码数据。它由经典的数学家和计算机科学家大卫哈夫曼在20世纪50年代发明。哈夫曼树的目的是为了在编码和解码数据中,尽可能地减少所需的比特数。换句话说,它可以将大量数据压缩为在传输过程中所需的最小比特数。
在NLP领域的词向量开篇制作Word2Vec中用到了一种softmax优化方法——层次softmax,就是将词频编码成哈夫曼树的形式,然后,(以skip-gram为例)在样本[v, w]进入模型前,将周围词w,基于哈夫曼树映射成从根到叶路径两个方向路径right_path=[p1, p2]; left_path=[n1, n2],最终组成[[v, p1], [v, p2]]; [[v, n1], [v, n2],最后以v, p, v, n 四个一维向量的方式进入模型。
一、哈夫曼树构建伪代码
哈夫曼树的构建过程非常简单,可以分为以下几个步骤:
- 根据数据出现的频率创建叶子节点,频率越高的字母对应的节点越靠近根节点。
- 对于两个字符的节点(由频率最低的字符所对应的节点)之间创建一个父节点。父节点的权重等于其两个子节点权重之和。
- 重复步骤2,直到所有的节点都被合并到同一个根节点下。
哈夫曼树构建图示

二、哈夫曼树构建python
借助优先队列headq 便于快速输出最小的2个节点
import heapq
class Node:
def __init__(self, idx, freq, char, left, right):
self.idx = idx
self.freq = freq
self.char = char
self.left = left
self.right = right
def __lt__(self, other):
return self.freq < other.freq
def __str__(self):
return f'Node([{
self.idx}]({
self.char}/{
self.freq}), left={
self.left}, right={
self.right})'
def __repr__(self):
return str(self)
def build_huffman_tree(data=None, freq_map=None):
if freq_map is None:
freq_map = dict()
for char in data:
freq_map[char] = freq_map.get(char, 0) + 1
print(freq_map)
word_map = [Node(idx, freq

文章介绍了哈夫曼树的基本概念,用于数据压缩和编码,以及在NLP领域Word2Vec模型中层次softmax的优化方法。提供了哈夫曼树的Python构建代码,并展示了如何生成哈夫曼编码和路径。
最低0.47元/天 解锁文章
3491

被折叠的 条评论
为什么被折叠?



