数学与统计
数学、统计学、概率论、因果分析
Scc_hy
不断进取的攻城狮
展开
-
数学_有趣的有理数(绘制有理数)
最近在抖音上看到有博主,将小数点转换为角度,然后绘制有理数和无理数的图像。出于好奇,笔者也用python的turtle写了个简单版本一、有理数分数图形有理数画出来都是具有一定的模式,会进行闭环,或者重复某种模式(如1/17)二、常见无理数倒数图形三、python脚本import turtlefrom decimal import Decimal, getcontextgetcontext().prec = 10000import timeimport numpy as npc原创 2021-09-15 02:07:15 · 636 阅读 · 0 评论 -
数学_图解特征值与特征向量
我们在机器学习中的PCA , SVD中都会遇到特征值和特征向量,这里变回顾一下线性代数的相关知识。同时也推荐大家看一下,网易公开课里的线性代数一、图解特征值与特征向量话不 多说,直接上图,大家看看就差不多明白了。简单讲,就是在一个线性变换之中,某些向量变换前后的差异仅仅是一个值,这些向量和这些值,就叫做特征向量和特征值对于l'而言,l为特征向量,-1是特征值...原创 2021-01-24 21:21:16 · 908 阅读 · 0 评论 -
统计_图解贝叶斯定理迭代学习
先从摇骰子开始,在古装电视中经常看到大侠听声辨点,还有小混混在骰子中加入重物,使得某个数字更容易摇到。假使有2个骰子,一个是正常骰子,一个是不正常骰子,正常骰子的质量均匀, 不正常骰子质量不均(更容易摇到1)。以图片的方式展现摇到1的占比,一个骰子6个面,正常骰子的 1 就占 1个面的面积,非正常骰子的 1 占 3个面的面积。则,第一次两个骰子同时摇到 1 的概率是(粉色面积占总面积的比)...原创 2018-11-07 00:12:37 · 2659 阅读 · 1 评论 -
统计_结构因果模型:模型驱动大于数据驱动
全文均基于 《为什么:关于因果关系的新科学》文章目录一、决定员工工资的更重要因素探索1.1 简单线性回归(数据驱动)1.2 结构因果模型(1)工资“听从于“工作经验和学历两者(2)工作经验“听从于”学历(3)结构因果模型反事实预测——假设爱丽丝有大学学历其现在工资是多少二、将表格中的问号填充完整&同条件比较2.1 将表格中的问号填充完整2.2 同条件比较一、决定员工工资的更重要因素探索在我们的生活当中会看到一些学历不高,由于经验非常丰富于是在一家公司里其工资很高;也会看到一些学历很高经验不.原创 2020-10-08 00:15:46 · 1085 阅读 · 0 评论 -
统计_贝叶斯_我的行李箱在哪里(根据《为什么关于因果关系的新科学》中第三章 )
文章目录一、p(我没拿到行李∣上飞机)p(我没拿到行李|上飞机)p(我没拿到行李∣上飞机) 列表二、一个时间点的逆概率计算三、绘制等待时期心里预期(p(行李上飞机∣我没拿到行李)p(行李上飞机|我没拿到行李)p(行李上飞机∣我没拿到行李))3.1 再观测心理预期环比变化情况四、如果更改行李箱上飞机的概率(0.8)的话一、p(我没拿到行李∣上飞机)p(我没拿到行李|上飞机)p(我没拿到行李∣上飞机...原创 2020-02-18 18:44:40 · 910 阅读 · 2 评论 -
数学_余弦距离不满足三角不定式简单证明
欧式距离三角不定式 : ∣∣a→−b→∣∣<∣∣a→∣∣+∣∣b→∣∣||\overrightarrow{a} - \overrightarrow{b}|| < ||\overrightarrow{a}|| + ||\overrightarrow{b}||∣∣a−b∣∣<∣∣a∣∣+∣∣b∣∣ (两边之和大于第三边)余弦距离公式: 1−1-1−...原创 2019-11-23 09:52:32 · 569 阅读 · 0 评论 -
数学_简述积分原理
一、积分积分的实际上就是求面积,像正方形、长方形等都有其求面积公式,一些正多边形也可以拆分成几个三角形和矩形的和,但是对于一些不规则的面积求解就存在难度,但实际上也是可以通过分割的方法无限逼近的。1、用无限分割的方法求面积当我们需要求y = x 的函数 中下图蓝色部分面积的时候可以先将这部分面积用几个矩形分割,假使下面的每一段长都是 0.428所这个时候计算出的覆盖面积是:第一块橙...原创 2018-12-20 18:55:03 · 11308 阅读 · 12 评论 -
数学_简述微分原理
跑6公里用了30分钟(好像稍微快了点ORT),那么这个过程的平均速度是3.33m/s先来看看这3.33m/s 的计算过程6Km30min=200m1min=3.33m1s\frac{6Km}{30min} = \frac{200m}{1min} = \frac{3.33m}{1s} 30min6Km=1min200m=1s3.33m从上述看,只要不断缩短时间,直到0,应该就可以定...原创 2018-12-26 13:02:54 · 5003 阅读 · 0 评论 -
统计_古典概型,条件概率,贝叶斯公式(Datawhale概率统计温习1)
文章目录一、古典概率之同班同学至少有一对同一天生日概率1.1 两个基本概念1.2 问题分析1.3 问题求解二、贝叶斯:有一人呈阳性反应,则此人确为肝癌患者的概率是多少2.1 问题分析2.2 问题求解2.3.1 python贝叶斯框架一、古典概率之同班同学至少有一对同一天生日概率1.1 两个基本概念事件概率P(A)=mn=事件A包含的基本事件数基本事件总数P(A) = \frac{m} {n} = \frac{事件A包含的基本事件数} {基本事件总数}P(A)=nm=基本事件总数事件A包含的基本事原创 2020-06-22 00:18:28 · 1136 阅读 · 0 评论 -
统计_偏态、峰值(Datawhale概率统计温习2)
文章目录一、偏度与峰度概念1.1 偏度1.2 峰度二、python实现一、偏度与峰度概念1.1 偏度偏度(skewness):也称为偏态,是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。直观看来就是密度函数曲线尾部的相对长度。偏度刻画的是分布函数(数据)的对称性,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。正态分布的偏度为0,两侧尾部长度对称。左偏:若以bs表示偏度。bs<0称分布具有负偏离,也称左偏态;此时原创 2020-06-23 23:39:35 · 1576 阅读 · 0 评论 -
统计_常见分布与假设检验(Datawhale概率统计温习3)
文章目录一、二项分布,泊松分布,正态分布的关系1.1 二项分布(Binomial distribution)1.2 泊松分布(Poisson distribution)1.3 正态分布(Normal distribution)1.4 三者的关系二、python简单实现&numpy随机数2.1 简单实现2.2 分布间关系一、二项分布,泊松分布,正态分布的关系1.1 二项分布(Binomial distribution)二项分布可以认为是一种只有两种结果(成功/失败)的单次试验重复多次后成功次数的原创 2020-07-04 17:06:33 · 904 阅读 · 0 评论 -
统计_三门问题:贝叶斯解答
一、三门问题“假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?”二、问题简化定义:Y为事件:门后面有车X为事件:选择一个门Z为事件:主持人打开一扇门1号门:A;2号门:B; 3号门:C;这时候能将问题描述为下述符号:P(Y=A | X=A, Z = C) (即,你选原创 2020-11-21 15:18:58 · 4513 阅读 · 0 评论