我将介绍如何使用SciSharp的TensorFlow.NET中训练线性回归模型。
什么是线性回归?
线性回归是一种线性方法,用于因变量与一个或多个自变量之间的关系进行建模。
考虑单个感兴趣变量y和单个预测变量x的情况。预测变量由许多名称调用:因变量,输入,特征; 预测变量通常称为自变量,输出,结果。
我们有一些数据$ D = {x {\ tiny i},y {\ tiny i}} $我们假设这个数据集的简单线性模型具有高斯噪声:
//准备培训数据
var train_X = np.array(3.3f,4.4f,5.5f,6.71f,6.93f,4.168f,9.779f,6.182f,7.59f,2.167f,7.042f,10.791f,5.313f,7.997f,5.654 f,9.27f,3.1f);
var train_Y = np.array(1.7f,2.76f,2.09f,3.19f,1.694f,1.573f,3.366f,2.596f,2.53f,1.221f,2.827f,3.465f,1.65f,2.904f,2.42 f,2.94f,1.3f);
var n_samples = train_X.shape [0];