使用C#实现线性回归

本文介绍了如何使用SciSharp的TensorFlow.NET库,在C#中实现线性回归模型。通过理解线性回归的基本概念,如成本函数和梯度下降,逐步展示如何训练模型并找到最优参数,以最小化预测值与实际值的误差。
摘要由CSDN通过智能技术生成

我将介绍如何使用SciSharp的TensorFlow.NET中训练线性回归模型。

什么是线性回归?

线性回归是一种线性方法,用于因变量与一个或多个自变量之间的关系进行建模。
考虑单个感兴趣变量y和单个预测变量x的情况。预测变量由许多名称调用:因变量,输入,特征; 预测变量通常称为自变量,输出,结果。
我们有一些数据$ D = {x {\ tiny i},y {\ tiny i}} $我们假设这个数据集的简单线性模型具有高斯噪声:

//准备培训数据

var train_X = np.array(3.3f,4.4f,5.5f,6.71f,6.93f,4.168f,9.779f,6.182f,7.59f,2.167f,7.042f,10.791f,5.313f,7.997f,5.654 f,9.27f,3.1f);
var train_Y = np.array(1.7f,2.76f,2.09f,3.19f,1.694f,1.573f,3.366f,2.596f,2.53f,1.221f,2.827f,3.465f,1.65f,2.904f,2.42 f,2.94f,1.3f);
var n_samples = train_X.shape [0];
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值