NumPy是在python中处理数据的最基本和最强大的包。如果您打算从事数据分析或机器学习项目,那么对numpy的充分理解几乎是必须的。其他用于数据分析的软件包(如pandas)是建立在numpy之上的,用于构建机器学习应用程序的scikit-learn软件包也非常适合numpy。但对于.NET开发人员来说,没有这样的工具库。虽然有像Deedle和Math.NET这样的开源库,但它们不是很容易使用,也不能借用很多现有的python代码。
NumSharp(Numerical .NET)是C#中的线性代数库。它是用C#编写的,符合.net标准2.0库。它的目标是允许.NET开发人员使用NumPy的语法编写机器学习代码,从而最大限度地降低迁移python代码的成本。 NumSharp使用最新的Span技术直接安全地访问内存,优化每个模拟API的性能。 NumSharp对于在数组上执行数学和逻辑运算非常有用。它为.NET中的n阵列和矩阵的操作提供了大量有用的功能。
让我们给出一个代码片段来说明如何使用NumSharp。
// 初始化一个NumSharp实例,类名故意叫NumPy
var np = new NumPy<int>();
// 产生一个数字0到9的向量
np.arange(10)
// 产生一个3维张量
np.arange(12).reshape(2, 3, 2);
// 产生10个0到9的随机数,并转换成5*5的矩阵
np.random.randint(low: 0, high: 10, size: new Shape(5, 5));
上面的代码是不是看起来否非常接近python代码?