在Python中,对象是独立的,不同作用域中的不同名字都可以被绑定在同一个对象上,当然对这个对象的修改会影响所有的引用。赋值操作就是名字和对象的绑定或重绑定。这和C++中的引用是一样的。
1,基础概念
1.1 命名空间(namespace)
A namespace is a mapping from names to objects
命名空间是名字和对象的映射。也就是可以把一个namespace理解为一个字典,实际上很多当前的Python实现namespace就是用的字典。各个命名空间是独立的,没有任何关系的,所以一个命名空间中不能有重名,但不同的命名空间是可以重名而没有任何影响。
那么哪些可以是一个namespace呢:
- 比如Python的built-in names(包括内置函数,内置常量,内置类型);
- 一个模块的global names(这个模块定义的函数,类,变量);
- 一个函数的所有local names;
- 还有一个类对象的所有属性(数据成员,成员函数)都组成一个命名空间。
Python中的所有代码都与一个命名空间关联。
主Python程序中的代码与一个名为__main__的命名空间关联,将代码放在其单独的模块中时, Python会自动创建一个与模块同名的命名空间。所以,你的模块中的代码会与该名为该模块的命名空间相关联。
简单的,可以把命名空间理解为人们的姓氏,张三还是李三,不同模块中可能会出现重名,都叫'三', 命名空间就帮助解释器进行区分,解释器就知道去哪里找这个函数。
命名空间都是有创建时间和生存期的。对于Python built-in names组成的命名空间,它在Python解释器启动的时候被创建,在解释器退出的时候才被删除;对于一个Python模块的global namespace,它在这个module被import的时候创建,在解释器退出的时候退出;对于一个函数的local namespace,它在函数每次被调用的时候创建,函数返回的时候被删除。
[总结]一个模块的引入,函数的调用,类的定义都会引入命名空间,函数中的再定义函数,类中的成员函数定义会在局部namespace中再次引入局部namespace。
1.2 作用域(scope)
A scope is a textual region of a Python program where a namespace is directly accessible.
作用域是Python程序(文本)的某一段或某些段,在这些地方,某个命名空间中的名字可以被直接引用。这个作用域就是这个命名空间的作用域。
一个Python程序的几个作用域:
- 最里面的局部作用域
- 外层函数的局部作用域
- 模块的全局作用域
- 包含Python内置对象的最外层作用域
关于作用域,参加Python基础-函数这片博客中2小节的例子。
1.3 赋值(assignment)
Assignments do not copy data — they just bind names to objects.
赋值操作不会拷贝,只是把名字和对象做一个绑定。也就是赋值语句是起一个绑定或重绑定的作用(bind or rebind)。函数调用的参数传递是赋值,不是拷贝。
2,global和nonlocal语句
global语句用来声明一系列变量,这些变量会引用到当前模块的全局命名空间的变量(module-level namespace),如果该变量没有定义,也会在全局空间中添加这个变量。
global var1, var2
nonlocal语句(nonlocal是Python3.2引入的)
Python2.7中还没有nonlocal语句。nonlocal语句用来声明一系列的变量,这个声明会从声明处从里到外的namespace去搜寻这个变量(the nearest enclosing scope),直到模块的全局域(不包括全局域),找到了则引用这个命名空间的这个名字和对象,若作赋值操作,则直接改变外层域中的这个名字的绑定。nonlocal语句声明的变量不会在当前scope的namespace字典中加入一个key-value对,如果在外层域中没有找到,则如下报错。
>>>SyntaxError: no binding for nonlocal 'spam' found
一个nonlocal和global的测试例子
1 def test():
2 def do_local():
3 spam = "local spam"
4 def do_nonlocal():
5 nonlocal spam
6 spam = "nonlocal spam"
7 def do_global():
8 global spam
9 spam = "global spam"
10 spam = "test spam"
11 do_local()
12 print("after local assignment:", spam) #输出:test spam
13 do_nonlocal()
14 print("after nonlocal asssignment:", spam) #输出:nonlocal spam
15 do_global()
16 print("after global assignment:", spam) #输出:nonlocal spam
17
18 test()
19 print("in global scope:", spam) #输出:global spam
第5行的语句:nonlocal spam 没有在函数do_nonlocal()的域中创建一个变量,而是去引用到了外层的,10行定义的spam。
第8行的global spam,在全局域中创建了一个name,9行将其绑定在字符串常量对象"global spam"上。
跟进一步测试nonlocal
1 def test():
2 def do_nonlocal():
3 nonlocal spam
4 def do_nonlocal2():
5 nonlocal spam
6 spam = "nonlocal2 spam" #修改了test()中spam的绑定
7 do_nonlocal2()
8 spam = "test spam"
9 do_nonlocal()
10 print("after nonlocal2 asssignment:", spam) #输出:nonlocal2 spam
11 test()
do_nonlocal2()中的spam引用的是其外面的二层,也就是test()函数域中的spam。
参考:
http://docs.python.org/3.3/tutorial/classes.html#python-scopes-and-namespaces Python文档
http://docs.python.org/3.2/reference/simple_stmts.html Python文档-simple statement
更多: Python 目录