这次终于赶上力扣的周赛了, 赛时成绩如下(依旧还是三题 ):
1. 统计被覆盖的建筑
给你一个正整数
n
,表示一个n x n
的城市,同时给定一个二维数组buildings
,其中buildings[i] = [x, y]
表示位于坐标[x, y]
的一个 唯一 建筑。如果一个建筑在四个方向(左、右、上、下)中每个方向上都至少存在一个建筑,则称该建筑 被覆盖 。
返回 被覆盖 的建筑数量。
数据范围如下:
2 <= n <= 10^5
1 <= buildings.length <= 10^5
buildings[i] = [x, y]
1 <= x, y <= n
buildings
中所有坐标均 唯一 。
解题思路:题目描述的是一个建筑,在上下左右四个方向只要有建筑就行(不一定相邻)
下面代码中提供了具体实现思路。
代码如下:
class Solution {
public:
int countCoveredBuildings(int n, vector<vector<int>>& buildings) {
unordered_map<int,vector<int>> a,b;
for(auto& v: buildings){
int x=v[0]; int y=v[1];
a[x].push_back(y);
b[y].push_back(x);
}
for(auto& x:a){
auto& va=x.second;
sort(va.begin(),va.end());
}
for(auto& y:b){
auto& va=y.second;
sort(va.begin(),va.end());
}
int cnt=0;
for(auto& v:buildings){
int x=v[0]; int y=v[1];
auto& r=a[x];
auto& c=b[y];
auto itX=lower_bound(c.begin(),c.end(),x);
bool l_one=(itX!=c.begin()); bool r_one=(next(itX)!=c.end());
auto itY=lower_bound(r.begin(),r.end(),y);
bool l_two=(itY!=r.begin()); bool r_two=(next(itY)!=r.end());
if(l_one&&r_one&&l_two&&r_two) cnt++;
}
return cnt;
}
};
1. 统计x相等的 2. 统计y相等的
eg: [[1,2],[2,2],[3,2],[2,1],[2,3]]
x:
(1,2)
(2,1) (2,2) (2,3)
(3,2)
y:
(2,3)
(1,2) (2,2) (3,2)
(2,1)
eg: (2,2) 检查(2,2)坐标的x左右侧和y的左右侧 x: (1,3) y: (1,3) 符合题意
给你一个整数
n
,表示图中的节点数量,这些节点按从0
到n - 1
编号。同时给你一个长度为
n
的整数数组nums
,该数组按 非递减 顺序排序,以及一个整数maxDiff
。如果满足
|nums[i] - nums[j]| <= maxDiff
(即nums[i]
和nums[j]
的 绝对差 至多为maxDiff
),则节点i
和节点j
之间存在一条 无向边 。此外,给你一个二维整数数组
queries
。对于每个queries[i] = [ui, vi]
,需要判断节点ui
和vi
之间是否存在路径。返回一个布尔数组
answer
,其中answer[i]
等于true
表示在第i
个查询中节点ui
和vi
之间存在路径,否则为false
。数据范围如下:
1 <= n == nums.length <= 10^5
0 <= nums[i] <= 10^5
nums
按 非递减 顺序排序。0 <= maxDiff <= 10^5
1 <= queries.length <= 10^5
queries[i] == [ui, vi]
0 <= ui, vi < n
解题思路:没啥好说的,直接套并查集模版就行(我前面的基础算法学习中提到了)
class DisjointSet {
vector<int> fa;
vector<int> sz;
public:
int cc;
DisjointSet(int n) : fa(n), sz(n, 1), cc(n) {
ranges::iota(fa, 0);
}
int find(int x) {
if (fa[x] != x) {
fa[x] = find(fa[x]);
}
return fa[x];
}
bool is_same(int x, int y){
return find(x) == find(y);
}
bool Union(int from, int to) {
int x = find(from), y = find(to);
if (x == y) {
return false;
}
fa[x] = y;
sz[y] += sz[x];
cc--;
return true;
}
int get_size(int x) {
return sz[find(x)];
}
};
class Solution {
public:
vector<bool> pathExistenceQueries(int n, vector<int>& nums, int maxDiff, vector<vector<int>>& queries) {
DisjointSet a(n);
vector<bool> answer; sort(nums.begin(),nums.end());
for(int i=1;i<nums.size();i++){
if(nums[i]-nums[i-1]<=maxDiff){
a.Union(i,i-1);
}
}
for(auto& q:queries){
int x=q[0]; int y=q[1];
answer.push_back(a.find(x)==a.find(y));
}
return answer;
}
};
判断节点i和节点j之间存在无向边
|nums[i]-nums[j]|<=maxDiff => 满足公式则存在无向边
然后给你个query查询,返回一个bool类型的answer数组
3.判断连接可整除性
给你一个正整数数组
nums
和一个正整数k
。当
nums
的一个 排列 中的所有数字,按照排列顺序 连接其十进制表示 后形成的数可以 被k
整除时,我们称该排列形成了一个 可整除连接 。返回能够形成 可整除连接 且 字典序 最小 的排列(按整数列表的形式表示)。如果不存在这样的排列,返回一个空列表。
数据范围如下:
1 <= nums.length <= 13
1 <= nums[i] <= 105
1 <= k <= 100
解题思路:如果是暴力全排列的话是O(n!),题目说的字典序数组,比较的是数组的数字
eg: [3,12,45]和[3,45,12], 前面的字典序更小
为了让字典序最小,我们要从小到大枚举。把 nums 从小到大排序,然后枚举第一个位置填nums[0],nums[1],nums[2]....nums[n-1], 一旦我们找到了答案(拼接的 n 个数模 k 等于 0),就立刻返回 true,不再继续递归搜索, 因为有重复的状态,所以我们要写一个记忆化数组。
递归入口:dfs(0, 0) 是从初始状态(无数字被使用,拼接为0)开始搜索,尝试找到一种数字排列,使得拼接后的数字能被 k 整除。如果找到,返回对应的排列(path);否则返回空列表。
递归出口:m==(1<<n)-1, 这是集合的二进制表示,指的是所有数字都被使用了
class Solution {
public:
vector<int> concatenatedDivisibility(vector<int>& nums, int k) {
int n=nums.size();
sort(nums.begin(),nums.end());
vector<int> len(n),pow_10_len(n);
for(int i=0;i<n;i++){
int x=nums[i];
int t=x;
while(t>0){
len[i]++;
t/=10;
}
int p=1;
for(int j=0;j<len[i];j++){
p=p*10;
}
pow_10_len[i]=p;
}
vector<vector<bool>> memo(1 << n, vector<bool>(k, false));
vector<int> path;
auto dfs = [&](this auto&& dfs,int m, int r) -> bool {
if (m == (1 << n) - 1) {
return r == 0;
}
if (memo[m][r]) return false;
for (int i = 0; i < n; i++) {
if (!(m & (1 << i))) {
int new_r = (r * pow_10_len[i] + nums[i] ) % k;
path.push_back(nums[i]);
if (dfs(m | (1 << i), new_r)) {
return true;
}
path.pop_back();
}
}
memo[m][r] = true;
return false;
};
if (dfs(0, 0)) {
return path;
}else {
return {};
}
}
};
给你一个整数
n
,表示图中的节点数量,这些节点按从0
到n - 1
编号。同时给你一个长度为
n
的整数数组nums
,以及一个整数maxDiff
。如果满足
|nums[i] - nums[j]| <= maxDiff
(即nums[i]
和nums[j]
的 绝对差 至多为maxDiff
),则节点i
和节点j
之间存在一条 无向边 。此外,给你一个二维整数数组
queries
。对于每个queries[i] = [ui, vi]
,找到节点ui
和节点vi
之间的 最短距离 。如果两节点之间不存在路径,则返回 -1。返回一个数组
answer
,其中answer[i]
是第i
个查询的结果。注意:节点之间的边是无权重(unweighted)的。
感觉要用线段树优化,没写出来(还是太菜了)
具体解法可以看这位佬的。
3534. 针对图的路径存在性查询 II - 力扣(LeetCode)
感谢大家的点赞和关注,你们的支持是我创作的动力!