牛客周赛 Round 91

 赛时成绩如下:


 A. while

题目描述

小歪找到了一个由五个字符构成的字符串,它一次可以选择任意一个字符,将其修改为另一个字符,他想要知道,将这个字符串修改为 "while" 需要的最少操作次数。

 解题思路:统计不同字符的个数

代码如下: 

#include<bits/stdc++.h>
using namespace std;
int main(){
    string s;
    cin>>s; string a="while";
    int cnt=0;
    for(int i=0;i<5;i++){
        if(s[i]!=a[i]) cnt++;
    }
    cout<<cnt<<endl;
}

 B. oken

题目描述

小歪正在研究大模型,但是,token很贵。他一共进行了 n 次对话,第 i 次对话的token使用 ai​ 表示。每一次对话都会回溯最近的十次对话,所以,第 j 次对话的真实token用量 aj+aj−1+aj−2+⋯+aj−9​。如果不足十次,则不足部分用 0 补齐。
现在,小歪想知道,真实token用量最多的一次对话,最多用了多少token。

解题思路:维护一个大小为10的窗口, 然后维护一个最大值即可, 我用的是deque实现的, 为了防止爆int, 我们把数据范围开到long long 

 代码如下:

#include <bits/stdc++.h>
using namespace std;
int main() {
    int n;
    cin >> n;
    vector<long long> a(n);
    for (int i = 0; i < n; i++) cin >> a[i];
    long long totalSum = 0,res = 0;
    deque<long long> q;  
    for (int i = 0; i < n; i++) {
        totalSum += a[i];
        q.push_back(a[i]);
        if (q.size() > 10) {
            totalSum -= q.front();
            q.pop_front();
        }
        res = max(res, totalSum);
    }
    cout << res << endl;
    return 0;
}

C.小苯的逆序对和

题目描述

小苯拿到了一个长度为 n 的排列 a,他希望你帮他找出一对总和最大的逆序对,请你帮帮他吧。(你只需要输出这个最大和即可。)
形式化的:请找出一对下标 i,j (1≦i<j≦n)且 ai>aj​,并最大化 ai​+aj​。 

数据范围:n(排列a的长度) -> [1,2x10^5], 卡你两层循环呢,但是某蓝某桥某杯一般不卡。

ai -> [1,n]

解题思路: 为了最大化ai+aj, 我们依旧是在遍历的同时去维护一个最大值, ai和前i-1个数中的最大值 x 进行比较, x>ai, 配对成功 -> (x,ai)。然后此基础上求出所有的情况的最大值  

代码如下: 

#include <bits/stdc++.h>
using namespace std;
int main() {
    int t;
    cin >> t;
    while (t--) {
        int n;
        cin >> n;
        vector<int> a(n);
        for (int i = 0; i < n; ++i) cin >> a[i];
        int res = 0;
        int b = a[0];
        for (int j = 1; j < n; ++j) {
            if (b > a[j]) {
                res = max(res, b + a[j]);
            }
            b = max(b, a[j]);
        }
        cout << res << endl;
    }
    return 0;
}

 D. 数组4.0

题目描述

小红有一个长度为 n 的数组 a,下标从 1 开始。
如果两个数ai,aj​的绝对差值为1, 那么 i,j 之间存在一条无向边。
为了使得所有索引之间相互可达,小红至少需要手动再加多少条边。

数据范围:数组长度n -> [1, 2x10^5], 依旧卡你两层循环 ;

数组的第i个元素ai -> [1,2x10^5]

解题思路:题意说的是由n-1个节点, 确保让每两个数ai,aj,都满足|ai-aj|=1

如果两个数ai,aj的绝对差为1,是不需要进行连边的,当做一个连通块;另外如果两个数ai,aj的绝对差不为1,此时需要连边,eg: 1 3 5, 这就需要连3-1=2条(这就是为啥代码中结果count-1) , eg: 1 2 4 5  -> 连续的数字是(1,2)和(4,5), 不需要连边, 一共两个连通块,连接两个联通块需要1条边 eg: 1 1 3 3 ->没有连续的数字, 每个都是独立的联通块, 1:freq(2) 3: freq(2) , 一共4个联通块, 需要3条边

#include <bits/stdc++.h>
using namespace std;
int main(){
    int t;
    cin >> t;
    while (t--){
        int n;
        cin >> n;
        vector<int> b(n);
        for (int i = 0; i < n; i++) cin >> b[i];
        sort(b.begin(), b.end());
        vector<pair<int,int>> groups;
        for (int i = 0; i < n; ){
            int v = b[i], cnt = 0;
            while (i < n && b[i] == v){
                cnt++;
                i++;
            }
            groups.emplace_back(v, cnt);   
//             连续相同数字的出现次数
        }
        int count = 0;   //联通块的数量
        int m = groups.size();
        for (int i = 0; i < m; ){
            int j = i;
            while (j+1 < m && groups[j+1].first == groups[j].first + 1){
                j++;
            }
            if(i == j){
                count += groups[i].second;    
//                 需要手动添加的边数
            } else {
                count += 1;     
//                 连续字符是一个连通块               
            }
            i = j + 1;
        }
        int ans = max(0, count - 1);
        cout << ans << endl;
    }
    return 0;
}

E-小苯的矩阵反转 

题目描述

小苯有一个 n 行 m 列的 01 矩阵,其中有些格子是 1,另一些为 0。小苯希望从其中选择恰好:两行(可以相同),或两列(可以相同),或一行和一列。将选择的行和列中的数字先后 "反转"。(即 0 变 1,1 变 0。)
需要注意的是:如果同时选择了行和列,则交叉点处的点会 "反转" 两次,相当于没有 "反转"。)
现在他想知道,他是否可以把矩阵变成全 0 的,请你帮他确定一下吧。

数据范围:n,m都是[1,10^3], 这次不卡你两层循环了

 解题思路:模拟即可

代码如下: 

#include <bits/stdc++.h>
using namespace std;
int main(){
    int t;
    cin >> t;
    while (t--){
        int n, m;
        cin >> n >> m;
        vector<string> a(n);
        for (int i = 0; i < n; i++)  cin >> a[i];
        vector<int> rowSum(n, 0), colSum(m, 0);
        long long total = 0;
        for (int i = 0; i < n; i++){
            for (int j = 0; j < m; j++){
                if (a[i][j] == '1'){
                    rowSum[i]++;
                    colSum[j]++;
                    total++;
                }
            }
        }
        if (total == 0) {
            cout << "YES"<< endl;
            continue;
        }
        {
            int cnt = 0;
            bool f = false;
            for (int i = 0; i < n; i++){
                if (rowSum[i] == m) cnt++;
                else if (rowSum[i] != 0) { f = true; break; }
            }
            if (!f && cnt == 2 && total == 2LL * m) {
                cout << "YES" << endl;
                continue;
            }
        }
        {
            int cnt = 0;
            bool f = false;
            for (int j = 0; j < m; j++){
                if (colSum[j] == n) cnt++;
                else if (colSum[j] != 0) { f = true; break; }
            }
            if (!f && cnt == 2 && total == 2LL * n) {
                cout << "YES" << endl;
                continue;
            }
        }
        if (total == (long long)(m - 1) + (n - 1)){
            int ri = -1, cj = -1;
            for (int i = 0; i < n; i++){
                if (rowSum[i] == m - 1){
                    if (ri != -1) { ri = -2; break; }
                    ri = i;
                }
            }
            for (int j = 0; j < m; j++){
                if (colSum[j] == n - 1){
                    if (cj != -1) { cj = -2; break; }
                    cj = j;
                }
            }
            if (ri >= 0 && cj >= 0 && a[ri][cj] == '0'){
                bool f = true;
                for (int j = 0; j < m; j++){
                    if (j == cj) continue;
                    if (a[ri][j] != '1'){ f = false; break; }
                }
                for (int i = 0; f && i < n; i++){
                    if (i == ri) continue;
                    if (a[i][cj] != '1'){ f = false; break; }
                }
                for (int i = 0; f && i < n; i++){
                    if (i == ri) continue;
                    for (int j = 0; j < m; j++){
                        if (j == cj) continue;
                        if (a[i][j] != '0'){ f = false; break; }
                    }
                }
                if (f){
                    cout << "YES" << endl;
                    continue;
                }
            }
        }
        cout << "NO" <<endl;
    }
    return 0;
}

 F. 小苯的因子查询

题目描述

小苯对奇数很感兴趣,他给定了一个正整数 n,希望你求出:如果从 n!(即 n 的阶乘)的因子中随机等概地取一个数,则其是奇数的概率是多少,请你帮他算一算吧。

x 的因子:即整除 x的正整数,例如 3 就是 6 的因子,2 也是。

解题思路:P=奇数因子数/总因子数,设n!=2^e*m(m为奇数), 所以总因子数=(e+1)*奇数因字数(m) , 所以 P=m/m*(e+1)=1/(e+1), 接着计算e, (e是n!中2的幂次),就是累加二进制数中所有的1,  __builtin_ctz(i)是计算i的二进制末尾 0 的个数, 题目结果计算的是分数%M,将除法转化为乘法 eg: p/q mod M => p*q^-1 mod M,q^-1是q的模逆元  我们这里使用递推式预处理逆元,c[1]=1, c[i]=(M - M / i) * c[M % i] % M (i>1),注:c[i] 表示 i^−1 mod M, 最后答案是c[b[n] + 1]

代码如下: 

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int M = 998244353;
int solve(ll a, ll b){ return int((a*b) % M); }
int main(){
    int t;
    cin >> t;
    vector<int> a(t);
    int maxn = 0;
    for(int i = 0; i < t; i++){
        cin >> a[i];
        maxn = max(maxn, a[i]);
    }
    vector<int> b(maxn+1);
    b[0] = 0;
    for(int i = 1; i <= maxn; i++){
        b[i] = b[i-1] + __builtin_ctz(i);
    }
    int maxe = b[maxn]; 
    vector<int> c(maxe + 2);
    c[1] = 1;
    for(int i = 2; i <= maxe+1; i++){
        c[i] = solve(M - M/i, c[M % i]);
    }
    for(int i = 0; i < t; i++){
        int n = a[i];
        int x = b[n];
        int ans = c[x + 1];
        cout << ans;
        if (i + 1 < t) cout << ' ';
    }
    return 0;
}

感谢大家的点赞和关注,你们的支持是我创作的动力!

如果这篇热度高的话,会提供更加详细的解题思路!

 

关于Round 83 的具体题目和解答,目前并未提供直接的引用支持。然而,可以基于以往的经验以及类似的周赛模式来推测可能涉及的内容结构。 通常情况下,周赛会包含多个不同难度级别的题目,从简单的签到题(A 类型)到较难的挑战性问题(E 或 F 类型)。以下是根据已有经验构建的一般框架: ### 周赛 Round 83 可能的主题 #### A - 签到题 这类题目通常是简单算法的应用或者基础逻辑判断。例如: ```python def solve_a(): n = int(input()) result = sum(range(1, n + 1)) # 计算前N项自然数之和 print(result) solve_a() ``` 此部分无需深入解析,主要考察参赛者的基础编程能力[^1]。 #### B - 中等难度题 此类题目可能会涉及到数组操作、字符串处理或基本数据结构应用。比如给定一段文字统计特定字符频率的问题。 ```python from collections import Counter def solve_b(): s = input().strip() counter = Counter(s) most_common_char, count = counter.most_common(1)[0] print(most_common_char, count) solve_b() ``` 上述代码片段展示了如何利用Python内置库快速解决常见计数类问题[^2]。 #### C/D/E/F 更高阶挑战 这些更复杂的任务往往需要运用高级技巧如动态规划(DP),图论(Graph Theory)或者其他专门领域知识才能有效完成。由于缺乏具体的Round 83资料,这里仅给出一个假设性的例子有关最短路径寻找: ```python import heapq INF = float('inf') def dijkstra(graph, start_node): distances = {node: INF for node in graph} distances[start_node] = 0 priority_queue = [(0, start_node)] while priority_queue: current_distance, current_vertex = heapq.heappop(priority_queue) if current_distance > distances[current_vertex]: continue for neighbor, weight in graph[current_vertex].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances graph_example = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } print(dijkstra(graph_example, 'A')) ``` 这段程序实现了经典的迪杰斯特拉算法用于求解加权无向图中的单源最短路径问题[^3]. 尽管无法确切知道每道实际考题是什么样子,但通过以上介绍应该能够帮助理解一般竞赛形式下的潜在考点及其解决方案设计方法.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值