列表推导式
什么是列表推导式
[结果 for 变量 in 可迭代对象 if 条件]
# 获取200以内的偶数:
_list = [i for i in range(0, 201) if i % 2 == 0]
print(_list)
运行结果:
生成器表达式
什么是生成器
通过列表推导式,可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,占用很大的存储空间。如果我们仅仅需要访问前面几个元素,后面元素的占用存储空间就被浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们就可以在循环当中不断地推导它,生成元素。这样就不必创建完整的list,从而大大节省了存储空间。
在python中,这种一边循环一边计算的机制,称为生成器:generator.
生成器表达式和列表表达式差不多,只是把[]换为()即可:
gen = ("众将士,随我第%s次冲~~~" % i for i in range(10))
print(next(gen)) #可以通过next(生成器对象)获取生成器的下一个返回值。
print("********************")
for i in gen:
print(i)
print("********************")
for i in gen:
print(i)
运行结果:
扩展
def add(a, b):
return a + b
def generate():
for r_i in range(5):
yield r_i
g = generate()
for n in [1, 5]:
g = (add(n, i) for i in g)
for item in g:
print(item)
def add(a, b):
return a + b
def generate():
for r_i in range(5):
yield r_i
g = generate()
for n in [1, 5]:
g = (add(n, i) for i in g)
for item in g:
print(item)
生成器保存的是算法!!!!!!!!!每次调用next(g),就计算出g的下一个元素的值,直接计算到最后一个元素,如果没有更多的元素时,抛出StopIteration异常。
在实际编程当中,使用最多的是,将生成器以for方式来使用。通过for迭代,拿到元素,不用担心StopIteration异常
练习
查找列表中重复元素
lstA = [4, 2, 5, 5, 6, 8, 6, 5, 2, 3, 2, 6, 2, 5, 4, 2, 3, 6, 9, 5, 2, 2, 6, 8, 2, 1, 4, 5, 6, 8, 5, 2]
el = lstA
from collections import defaultdict
def listDu(seq):
'''
统计列表中重复的元素并显示其所在的所有位置
:param seq: 需要统计的列表
:return: 生成器表达式
'''
allNum = defaultdict(list) #当字典里的key不存在但被查找时,返回的不是keyError而是一个默认值,这个默认值是参数(工厂函数)的默认值,
for i, item in enumerate(seq):
allNum[item].append(i)
return ((key, l) for key, l in allNum.items() if len(l) > 1)
for elOne in sorted(listDu(el)):
print(elOne)
运行结果
总结:两者区别
- 生成器表达式每次处理一个对象,而不是一口气处理和构造整个数据结构,这样做可以节省大量的内存,在处理的数据量较大时,最好考虑使用生成器表达式而不是列表推导式。
- 得到的值不一样,列表推导式得到的是一个列表,生成器表达式获取的是一个生成器,但是你可以遍历输出。而且列表推导式可以多次迭代,生成器表达式只能单次迭代
注意
生成器具有惰性机制,生成器只有在访问时候才取值。