差分约束系统

题目链接:https://www.luogu.com.cn/problem/P5960

差分约束系统定义:

现有x_1,x_2,......x_n

给出若干个形如x_i-x_j\leqslant k_b的不等式约束,其中1\leqslant i,j\leqslant n

求是否存在一组关于x_1x_n的解

解法:

首先给出结论:

解差分约束系统需要联系到图论中的最短路:

现建立一张图有n个结点,标号为1-n

对于每条不等式x_i-x_j\leqslant k_b

我们建立一条结点j指向结点i,权值为k_b的有向边

再建立一超级源点标号为n+1(标号任意,这里为了方便标为n+1)

(这里建立超级源点的目的是为了保证连通性,从起点可以到达图中的任意一个点,从而找出图中的全部最短路)

则可以定义数组d[n]

d[u]为超级源点到u号结点的最短路

将d[i]分别与不等式中的x_i对应

则我们有:d[i]-d[j]<=k_b

也就是说,若超级源点到每个结点的最短路均存在,则该差分约束系统有解

此时,只需要给到超级源点的距离赋一个初值,即可以求出全部d[i],且刚好是全部取等的情况

那么当且仅当该图中存在负环时,最短路不存在,该差分约束系统无解

解法的证明:

假设现有三个结点1,2,3,存在边:

2->1,权值为a,

3->2,权值为b

3->1,权值为c

由于这里图已连通,所以就不再建立超级源点,不妨选取结点1作为起点

现对于不等式组:

x_1-x_2\leqslant a

x_2-x_3\leqslant b

x_1-x_3\leqslant c

则由最短路可知:

则要求结点2和结点3的最短路

显然就是要满足:

d[2]<=d[3]+b

d[1]<=d[3]+c

d[1]<=d[2]+b

三条不等式的交集

这刚好对应上面关于x的不等式组

由于每个结点都可以作为起点,那么这里可以推广到n个结点的情况

tips:

当我们遇到x_i-x_j\geqslant k_b

只需要两边同乘-1,然后建立一条i结点指向j结点,权值为-k_b的有向边即可

当我们遇到x_i-x_j=0

只需要建立两条i指向j,j指向i的权值为0的边即可

因为这相当于约束了

x_i-x_j\geqslant 0x_i-x_j\leqslant 0

负环的判定方法:

bellmanford或spfa均可,记得建立超级源点保证图的连通性,后者时间复杂度更低

spfa实现代码如下:

#include <iostream>
#include <queue>
#include <stack>
using namespace std;
const int N = 5005, M = 10010,INF=(1<<30);
int to[M], w[M], nxt[M], h[N], tot;
int dis[N], vis[N], cnt[N];
int n, m;
queue<int> q;
void add(int a, int b, int c) {
	to[++tot] = b;
	w[tot] = c;
	nxt[tot] = h[a];
	h[a] = tot;
}
bool spfa() {
	q.push(n + 1); dis[n + 1] = 0; vis[n + 1] = true; cnt[n + 1] = 1;
	int u;
	while (!q.empty()) {
		u = q.front(); q.pop();
		vis[u] = false;
		for (int i = h[u], v; v = to[i]; i = nxt[i]) {
			if (dis[v] > dis[u] + w[i]) {
				dis[v] = dis[u] + w[i];
				cnt[v] = cnt[u] + 1;
				if (cnt[v] > n+1) return false;
				if (!vis[v]) {
					q.push(v);
					vis[v] = true;
				}
			}
		}
	}
	return true;
}
int main() {
	cin >> n >> m;
	for (int i = 1,a,b,c; i <= n; i++) {
		cin >> a >> b >> c;
		add(b, a, c);
	}
	for (int i = 1; i <= n; i++) { 
		dis[i] = INF; 
		add(n + 1, i, 0);
	}
	if (spfa()) {
		for (int i = 1; i <= n; i++) cout << dis[i] << ' ';
	}
	else cout << "NO";
	return 0;
}

附:

新手题:https://www.luogu.com.cn/problem/P1993

实现代码:

int main() {
	cin >> n >> m;
	for (int i = 1,j,a,b,c; i <= m; i++) {
		cin >> j;
		if (j == 1) {
			cin >> a >> b >> c;
			add(a, b, -c);
		}
		else if (j == 2) {
			cin >> a >> b >> c;
			add(b, a, c);
		}
		else {
			cin >> a >> b;
			add(a, b, 0);
			add(b, a, 0);
		}
	}
	for (int i = 1; i <= n; i++) {
		add(n + 1, i, 0);
		dis[i] = INF;
	}
	if (spfa()) cout << "Yes";
	else cout << "No";
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值