AI算法模型线上部署方法总结
flask
https://dormousehole.readthedocs.io/en/latest/
fastApi
https://fastapi.tiangolo.com/zh/
django
https://docs.djangoproject.com/zh-hans/2.0/
pmml
https://zhuanlan.zhihu.com/p/73245462
https://www.freesion.com/article/10901383197/
(推荐)PMML介绍及使用
PMML 介绍:
https://zhuanlan.zhihu.com/p/73245462
xgboost为例导出模型到本地:
from sklearn2pmml import PMMLPipeline
from sklearn_pandas import DataFrameMapper
from sklearn2pmml import sklearn2pmml
import pickle
clf = xgb.XGBRegressor()
clf.fit(df_train[column_list], df_train[[y_name]])
# method1:存储为PMML形式
pipeline = PMMLPipeline([("regression", clf)])
pipeline.fit(df_train[column_list], df_train[[y_name]])
sklearn2pmml(pipeline, "models/%s.pmml" % clf_str, with_repr=True)
# method2:pickle保存模型 .dat
# save model to file
pickle.dump(clf, open("models/%s.pickle.dat" % clf_str, "wb"))
xgb_model = pickle.load(open("models/XGBRegressor().pickle.dat", "rb"))
column_list = ['c1', 'c2', 'c3']
result = xgb_model.predict(df[column_list])
xgboost-pmml,java调用pmml参考资料:
https://www.cnblogs.com/pinard/p/9220199.html
https://www.freesion.com/article/10901383197/
https://blog.csdn.net/Katherine_hsr/article/details/84951324
一、机器学习算法线上部署方法
来自:机器学习算法线上部署方法
我们经常会碰到一个问题:用了复杂的GBDT或者xgboost大大提升了模型效果,可是在上线的时候又犯难了,工程师说这个模型太复杂了,我没法上线,满足不了工程的要求,你帮我转换成LR吧,直接套用一个公式就好了,速度飞速,肯定满足工程要求。这个时候你又屁颠屁颠用回了LR,重新训练了一下模型,心里默骂千百遍:工程能力真弱。
这些疑问,我们以前碰到过,通过不断的摸索,试验出了不同的复杂机器学习的上线方法,来满足不同场景的需求。在这里把实践经验整理分享,希望对大家有所帮助。(我们的实践经验更多是倾向于业务模型的上线流程,广告和推荐级别的部署请自行绕道)。
首先在训练模型的工具上,一般三个模型训练工具,Spark、R、Python。这三种工具各有千秋,以后有时间,我写一下三种工具的使用心得。针对不同的模型使用场景,为了满足不同的线上应用的要求,会用不同的上线方法。
1.1 三种场景
- 如果是实时的、小数据量的预测应用,则采用的SOA调用Rserve或者python-httpserve来进行应用;这种应用方式有个缺点是需要启用服务来进行预测,也就是需要跨环境,从Java跨到R或者Python环境。对于性能,基本上我们用Rserver方式,针对一次1000条或者更少请求的预测,可以控制95%的结果在100ms内返回结果,100ms可以满足工程上的实践要求。更大的数据量,比如10000/次,100000/次的预测,我们目前评估下来满足不了100ms的要求,建议分批进行调用或者采用多线程请求的方式来实现。
- 如果是实时、大数据量的预测应用,则会采用SOA,训练好的模型转换成PMML(关于如何转换,我在下面会详细描述),然后把模型封装成一个类,用Java调用这个类来预测。用这种方式的好处是SOA不依赖于任何环境,任何计算和开销都是在Java内部里面消耗掉了,所以这种工程级别应用速度很快、很稳定。用此种方法也是要提供两个东西,模型文件和预测主类;
- 如果是Offline(离线)预测的,D+1天的预测,则可以不用考虑第1、2种方式,可以简单的使用Rscript x.R或者python x.py的方式来进行预测。使用这种方式需要一个调度工具,如果公司没有统一的调度工具,你用shell的crontab做定时调用就可以了。
以上三种做法,都会用SOA里面进行数据处理和变换,只有部分变换会在提供的Function或者类进行处理,一般性都建议在SOA里面处理好,否则性能会变慢。
大概场景罗列完毕,简要介绍一下各不同工具的线上应用的实现方式。
1.2 如何转换PMML,并封装PMML
大部分模型都可以用PMML的方式实现,PMML的使用方法调用范例见:
- jpmml的说明文档:GitHub - jpmml/jpmml-evaluator: Java Evaluator API for PMML;
- Java调用PMML的范例(PPJUtils/java/pmml at master · pjpan/PPJUtils · GitHub),此案例是我们的工程师写的范例,大家可以根据此案例进行修改即可;
- Jpmml支持的转换语言,主流的机器学习语言都支持了,深度学习类除外;
- 从下图可以看到,它支持R、python和spark、xgboost等模型的转换,用起来非常方便。
1.3 接下来说一下各个算法工具的工程实践
1.3.1 python模型上线:我们目前使用了模型转换成PMML上线方法。
- python-sklearn里面的模型都支持,也支持xgboost,并且PCA,归一化可以封装成preprocess转换成PMML,所以调用起来很方便;
- 特别需要注意的是:缺失值的处理会影响到预测结果,大家可以可以看一下;
- 用PMML方式预测,模型预测一条记录速度是1ms,可以用这个预测来预估一下根据你的数据量,整体的速度有多少。
1.3.2 R模型上线-这块我们用的多,可以用R model转换PMML的方式来实现。
这里我介绍另一种的上线方式:Rserve。具体实现方式是:用SOA调用Rserve的方式去实现,我们会在服务器上部署好R环境和安装好Rserve,然后用JAVA写好SOA接口,调用Rserve来进行预测;
- Java调用Rserve方式见网页链接:Rserve - Binary R server;
- centos的Rserve搭建方法见:centos -Rserve的搭建,这里详细描述了Rserve的搭建方式。
Rserve方式可以批量预测,跟PMML的单个预测方式相比,在少数据量的时候,PMML速度更快,但是如果是1000一次一批的效率上看,Rserve的方式会更快;用Rserve上线的文件只需要提供两个:
- 模型结果文件(XX.Rdata);
- 预测函数(Pred.R)。
Rserve_1启动把模型结果(XX.Rdata)常驻内存。预测需要的输入Feature都在Java里定义好不同的变量,然后你用Java访问Rserve_1,调用Pred.R进行预测,获取返回的List应用在线上。最后把相关的输入输出存成log进行数据核对。
Pred.R <- function(x1,x2,x3){
data <- cbind(x1,x2,x3)# feature engineeringscore <- predict(modelname, data, type = 'prob')return(list(score))
}
1.3.3 Spark模型上线-好处是脱离了环境,速度快。
Spark模型的上线就相对简单一