圣人曾说过:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。
再好的模型,如果没有好的数据和特征质量,那训练出来的效果也不会有所提高。数据质量对于数据分析而言是至关重要的,有时候它的意义会在某种程度上会胜过模型算法。
数据缺失的原因
首先我们应该知道:**数据为什么缺失?**数据的缺失是我们无法避免的,可能的原因有很多种,博主总结有以下三大类:
-
无意的:信息被遗漏,比如由于工作人员的疏忽,忘记而缺失;或者由于数据采集器等故障等原因造成的缺失,比如系统实时性要求较高的时候,机器来不及判断和决策而造成缺失;
-
有意的:有些数据集在特征描述中会规定将缺失值也作为一种特征值,这时候缺失值就可以看作是一种特殊的特征值;
-
不存在:有些特征属性根本就是不存在的,比如一个未婚者的配偶名字就没法填写,再如一个孩子的收入状况也无法填写;
总而言之,对于造成缺失值的原因,我们需要明确:是因为疏忽或遗漏无意而造成的,还是说故意造成的,或者说根本不存在。只有知道了它的来源,我们才能对症下药,做相应的处理。
数据缺失的类型
在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的。将数据集中不含缺失值的变量称为完全变量,数据集中含有缺失值的变量称为不完全变量。而从缺失的分布来将缺失可以分为完全随机缺失,随机缺失和完全非随机缺失。
-
完全随机缺失(missing completely at random,MCAR):指的是数据的缺失是完全随机的,不依赖于任何不完全变量或完全变量,不影响样本的无偏性,如家庭地址缺失;
-
随机缺失(missing at random,MAR):指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量,如财务数据缺失情况与企业的大小有关;
-
非随机缺失(missing not at random,MNAR):指的是数据的缺失与不完全变量自身的取值有关,如高收入人群不原意提供家庭收入;
对于随机缺失和非随机缺失,直接删除记录是不合适的,原因上面已经给出。随机缺失可以通过已知变量对缺失值进行估计,而非随机缺失的非随机性还没有很好的解决办法。
缺失处理
方式1:删除
直接去除含有缺失值的记录,这种处理方式是简单粗暴的,适用于数据量较大(记录较多)且缺失比较较小的情形,去掉后对总体影响不大。一般不建议这样做,因为很可能会造成数据丢失、数据偏移。
func: df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
# 1、删除‘age’列
df.drop('age', axis=1, inplace=True)
# 2、删除数据表中含有空值的行
df.dropna()
# 3、丢弃某几列有缺失值的行
df.dropna(axis=0, subset=['a','b'], inplace=True)