我的创作纪念日

机缘

我开始学习编程竞赛的时候我的老师鼓励我在博客上记录下自己的写题思路,所以我就注册了个CSDN的号,并在上面开始发题解啦~


收获

  1. 思维更加缜密,更全面
  2. 收获了NOI Online2022前25%

生活

写代码,学习,写代码,学习

#include<iostream>
using namespace std;
void Sleep(){
    for(int i = 1;i<=10;i++){
        cout<<"Sleep... ZZZ"<<endl;
    }
    return ;
}
void Eat(){
    cout<<"Eat... yum"<<endl;
    return ;
}
void Code(){
    for(int i = 1;i<=2;i++){
        cout<<"Code... What if this F**K code mean"<<endl;
    }
    return ;
}
void Learn(){
    cout<<"Learn... Noway···Wy I'm wrong"<<endl;
    return ;
}
void Play(){
    Code();
}
int main(){
    int live=365;
    while(live!=0){
        Eat();
        Learn();
        Learn();
        Learn();
        //Play();
        Eat();
        Learn();
        Learn();
        Learn();
        Learn();
        //Play();
        Eat();
        Code();
        Sleep();
        live--;
    }
}



憧憬

CSP过初赛!!!

内容概要:本文主要介绍了一项关于四足机器人轨迹优化四足机器人轨迹优化研究(Matlab代码实现)的研究,重点在于利用Matlab代码实现轨迹优化算法。通过对四足机器人运动学与动力学模型的建立,结合优化算法(如非线性模型预测控制、智能优化算法等),实现机器人在复杂地形下的稳定行走与高效路径规划。文中详细阐述了优化目标的设计,包括步态稳定性、能耗最小化、关节力矩平滑性等,并通过Matlab仿真验证了所提方法的有效性和鲁棒性。此外,文档还列举了多个相关研究方向和技术应用,展示了该领域与其他智能控制、路径规划及多传感器融合技术的紧密联系。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能机器人、运动控制、路径规划等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于四足机器人步态生成与轨迹优化算法的开发与仿真验证;②为复杂环境下移动机器人运动控制提供解决方案;③支持科研教学中对非线性优化、模型预测控制等高级控制策略的学习与实践。; 阅读建议:建议读者结合提供的Matlab代码进行实际操作,深入理解轨迹优化的数学建模过程与求解方法,同时可参考文中提到的协同路径规划、多传感器融合等扩展内容,拓展研究思路。
内容概要:本文研究了复杂威胁环境下多无人机的协同路径规划问题,提出了一种基于多段杜宾斯(Dubins)路径的方法,并通过Matlab代码实现了相关算法。该方法旨在为具有特定运动约束的无人机生成平滑、安【无人机】【基于多段杜宾斯Dubins路径的协同路径规划】复杂威胁环境下的多无人机协同路径规划研究(Matlab代码实现)全且高效的飞行路径,尤其适用于存在障碍物或禁飞区的复杂环境。文中详细阐述了路径规划模型的构建、多段Dubins路径的设计与优化过程,以及多机协同机制,确保各无人机在执行任务过程中能够有效规避威胁并避免相互碰撞。; 适合人群:具备一定无人机控制、路径规划或优化算法基础的科研人员及工程技术人员,尤其适合从事智能无人系统、自动化、航空航天等相关领域的研究生、博士生及研究人员。; 使用场景及目标:①解决复杂威胁环境下多无人机协同任务中的路径规划难题;②实现满足动力学约束的安全、平滑路径生成;③为多智能体协同控制与避障算法的研究提供仿真验证平台;④支持进一步扩展至动态环境或大规模集群场景的应用研究。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注多段Dubins路径的构造逻辑与协同优化策略的实现方式,并可通过调整威胁区域分布、无人机数量等参数开展仿真实验,深入理解算法性能与局限性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值