POJ3181 Dollar Dayz(DP)

69 篇文章 0 订阅

题意:

将N分解为为1~K的因子,求有几种分解方法。

要点:

这题挺难,用dp[n][m]表示n分解后最大因子为m的分解方法总和。可以写出状态转移方程dp[i][j]=dp[i][j-1]+dp[i-j][j-1]+……,可以这么理解:dp[i][j]可以由最大因子为j-1的通过i减去j的整数倍来得到。还可以进一步优化,这题还要用到大数的加法,用两个数组分别存储低位和高位可以做到,但是我觉得这么做有点问题,如果低位加起来正好出现前导0就会出现错误,这题可能数据比较水吧。

参考博客:点击打开链接 点击打开链接


15666472Seasonal3181Accepted1824K32MSC++845B2016-07-05 17:09:33
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
#define inf 100000000000000000 
//long long是9.22..*10^18次方,保证两个相加一定不超过

long long dp[1005][105][2];//0高位,1低位

int main()
{
	int n, m,i,j;
	while (scanf("%d%d", &n, &m) != EOF)
	{
		memset(dp, 0, sizeof(dp));
		for (i = 0; i <= m; i++)
			dp[0][i][1] = 1;//达到总和为0的都是1(什么都不需要一种)
		for(i=1;i<=n;i++)
			for (j = 1; j <= m; j++)
			{
				if (i < j)//n比m小的情况,dp[n][m]=dp[n][n],一直前推
				{
					dp[i][j][0] = dp[i][j-1][0];
					dp[i][j][1] = dp[i][j-1][1];
				}
				else
				{
					dp[i][j][0] = dp[i][j - 1][0] + dp[i - j][j][0];
					dp[i][j][1] = dp[i][j - 1][1] + dp[i - j][j][1];
					dp[i][j][0] += dp[i][j][1] / inf;
					dp[i][j][1] = dp[i][j][1] % inf;

				}
			}
		if (dp[n][m][0])
			printf("%lld", dp[n][m][0]);
		printf("%lld\n", dp[n][m][1]);
	}
	return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值