Polya Counting

Polya 计数的主要思想是对着色方案进行分类。
对一个图形进行某种操作(旋转或翻转)后,看不出任何变化。这样的操作只有有限个(从效果上看)。
如:一个对正方形的操作只可能有以下几种,
square
ρ1:逆时针翻转  90°
ρ2:逆时针翻转180°
ρ3:逆时针翻转270°
ρ4:逆时针翻转360°(相当于不动)
τ1:沿a、c中点翻转
τ2:沿b、d中点翻转
τ3:沿1、3对角线翻转
τ4:沿2、4对角线翻转

现在,我们把这些操作表示成一一对应的形式(permutation)
ρ1:逆时针翻转  90°
ρ1
          (1 2 3 4)
              ↓
          (2 3 4 1)

ρ2:逆时针翻转180°
ρ2
          (1 2 3 4)
              ↓
          (3 4 1 2)

ρ3:逆时针翻转270°
ρ3
          (1 2 3 4)
              ↓
          (4 1 2 3)

ρ4:逆时针翻转360°
ρ4
          (1 2 3 4)
              ↓
          (1 2 3 4)

τ1:沿a、c中点翻转
τ1
          (1 2 3 4)
              ↓
          (2 1 4 3)

τ2:沿b、d中点翻转
τ2
          (1 2 3 4)
              ↓
          (4 3 2 1)

τ3:沿1、3对角线翻转
τ3
          (1 2 3 4)
              ↓
          (1 4 3 2)

τ4:沿2、4对角线翻转
τ4
          (1 2 3 4)
              ↓
          (3 2 1 4)

回到着色问题上来,对某种着色方案c施以某种操作f后,得到一种新的方案f * c。但其实它们是同一种coloring。
τ4×

先定义两个集合:
G(c) = {f: f in G, f * c = c}
G(c)是使得c不变的permutation集合。
如:
τ1×
g1
C(f) = {c: c in C, f * c = c}
C(f)是施以f后保持不变的coloring的集合。
如:
ct1
Polya 计数基于两个观察结果:
1.对任意一个permutation f,有且只有|G(c)|个permutation能够产生与f同样的效果。
ρ
τ
ρ1和τ3产生了同样的效果;
ρ2和τ2产生了同样的效果;
ρ3和τ4产生了同样的效果;
ρ4和τ1产生了同样的效果。
注意G(c) = {ρ4, τ1},即   |G(c)| = 2。

2.每个permutaion能分成若干个集合(cycle),每个整数只可能出现在一个集合里面。
其实,某个cycle中的元素在这次操作中处于对称的位置(只能着相同的颜色),而且这个cycle着什么色不影响其他cycle的着色。
如:permutaion
          (1 2 3 4)
             ↓
          (2 3 4 1)
只有一个cycle(1234),而
          (1 2 3 4)
             ↓
          (2 1 4 3)
有两个cycle,(12)(34)。

由规律1可以得出:
the number of colorings equivalent to c = |G| / |G(c)|

由规律2可以得出:
如果有k种颜色,permutaion f 能产生k#种方案(#是f的cycle个数)

the number N(G, C) of nonequivalent colorings in C is:
    N(G, C) = ∑|G(c)| / |G|     (c ∈ C)
有兴趣的可以去看Richard A. Brualdi 的 Introductory CombinatoricsRichard A. Brualdi

pku 1286 实践一下。
注意几个细节:
1.permutation f 中的每个整数至多属于因子分解(把f分解成cycle的乘积)中的一个cycle。
2.cycle内必须着相同的颜色,但一个cycle的着色不影响另一个cycle的着色。
3.对一个正n角形的顶点施加的操作只有2n个。一半为rotation,一半为reflection。
4.对一个正(2k)角形的顶点施加的操作中,有一半的reflection是由2个1-cycle和(k-1)个2-cycle构成,还有一半是由 k 个2-cycle构成。
5.对一个正(2k+1)角形的顶点施加的操作中,所有的reflection都是由1个1-cycle和 k 个2-cycle构成。
6.如果rotation ρ(n)包含一个t-cycle,根据对称性,它一定只包含t-cycle,即 t 是 n 的一个因子。

 

2012.04.04 刚发现Mr. Thursday写的一篇神文《圖解Pólya計數法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值