1 题目
题目:交叉字符串(Interleaving String)
描述:给出三个字符串s1、s2、s3,判断s3是否由s1和s2交叉构成。
lintcode题号——29,难度——hard
样例1:
输入:
s1 = "aabcc"
s2 = "dbbca"
s3 = "aadbbcbcac"
输出:true
解释:s3 是由 s1 与 s2 交叉构成。
样例2:
输入:
s1 = ""
s2 = ""
s3 = "1"
输出:false
解释:s3 不是由 s1 与 s2 交叉构成。
样例3:
输入:
s1 = "aabcc"
s2 = "dbbca"
s3 = "aadbbbaccc"
输出:false
解释:s3 不是由 s1 与 s2 交叉构成。
2 解决方案
2.1 思路
使用动态规划的方式解,将状态dp[i][j]
定义为表示s1的前i个和s2的前j个能不能构成s3的前i+j个,则如果s1的第i字符与s2第j字符与s3的第i+j字符都相等,则只要dp[i - 1][j]
、dp[i][j - 1]
中一个为真,dp[i][j]
即可为真;如果只有s1的第i字符与s3的第i+j字符相等,则dp[i - 1][j]
为真,dp[i][j]
即为真;如果只有s2的第j字符与s3的第i+j字符相等,则dp[i][j - 1]
为真,dp[i][j]
即为真,理清动态规划的四要素即可解出。
双序列型动态规划:由于将状态定义成前i个字符的状态,所以前0个对象的状态~前i个对象的状态,一共有i+1个状态,所以容器的长度需要增加一位,注意与坐标型动态规划区分。
2.3 时间复杂度
算法会遍历二维数组,假设s1字符串和s2字符串的长度分别为m、n,则算法的时间复杂度为O(m*n)
。
2.4 空间复杂度
使用了二维数组数据结构,容量为m*n
,空间复杂度为O(m*n)
。
3 源码
细节:
- 动态规划的四要素:状态、方程、初始化、答案。(四要素在之前的题目数字三角形1中有详细介绍)
- 状态:用
dp[i][j]
表示s1的前i个和s2的前j个能不能构成s3的前i+j个。 - 方程:分三种情况,如果s1的第i字符与s2第j字符与s3的第i+j字符都相等,则只要
dp[i - 1][j]
、dp[i][j - 1]
中一个为真,dp[i][j]
即可为真;如果只有s1的第i字符与s3的第i+j字符相等,则dp[i - 1][j]
为真,dp[i][j]
即为真;如果只有s2的第j字符与s3的第i+j字符相等,则dp[i][j - 1]
为真,dp[i][j]
即为真。 - 初始化:s1前i个字符能不能独立构成s3的前i个字符,对应
dp[i][0]
;s2的前j个字符能不能独立构成s3的前j个字符,对应dp[0][j]
。 - 答案:s1的所以字符和s2的所有字符能不能构成s3的所有字符,即
dp[maxI]dp[maxJ]
。
C++版本:
/**
* @param s1: A string
* @param s2: A string
* @param s3: A string
* @return: Determine whether s3 is formed by interleaving of s1 and s2
*/
bool isInterleave(string &s1, string &s2, string &s3) {
// write your code here
if (s1.empty())
{
return s2 == s3;
}
if (s2.empty())
{
return s1 == s3;
}
// 状态:dp[i][j]表示s1的前i个和s2的前j个能不能构成s3的前i+j个
vector<vector<int>> dp(s1.size() + 1, vector<int>(s2.size() + 1));
// 初始化:s1前i个字符能不能独立构成s3的前i个字符;s2的前j个字符能不能独立构成s3的前j个字符
for (int i = 0; i < dp.size(); i++)
{
if (s1.substr(0, i) == s3.substr(0, i))
{
dp[i][0] = 1;
}
}
for (int j = 0; j < dp.front().size(); j++)
{
if (s2.substr(0, j) == s3.substr(0, j))
{
dp[0][j] = 1;
}
}
for (int i = 1; i < dp.size(); i++)
{
for (int j = 1; j < dp.front().size(); j++)
{
// 方程:如果s1的第i字符与s2第j字符与s3的第i+j字符都相等,则只要dp[i - 1][j]、dp[i][j - 1]中一个为真,dp[i][j]即可为真
if (s1[i - 1] == s3[i + j - 1] && s2[j - 1] == s3[i + j - 1])
{
dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
}
// 方程:如果只有s1的第i字符与s3的第i+j字符相等,则dp[i - 1][j]为真,dp[i][j]即为真
else if (s1[i - 1] == s3[i + j - 1])
{
dp[i][j] = dp[i - 1][j];
}
// 方程:如果只有s2的第j字符与s3的第i+j字符相等,则dp[i][j - 1]为真,dp[i][j]即为真
else if (s2[j - 1] == s3[i + j - 1])
{
dp[i][j] = dp[i][j - 1];
}
}
}
return dp[dp.size() - 1][dp.front().size() - 1]; // 答案:s1的所以字符和s2的所有字符能不能构成s3的所有字符
}
数字三角形:https://blog.csdn.net/SeeDoubleU/article/details/124678103 ↩︎