102 交叉字符串(Interleaving String)

文章介绍了如何通过动态规划方法判断给定的字符串s3是否由字符串s1和s2交叉构成,详细阐述了状态转移方程、时间和空间复杂度,并提供了C++代码实现。
摘要由CSDN通过智能技术生成

1 题目

题目:交叉字符串(Interleaving String)
描述:给出三个字符串s1、s2、s3,判断s3是否由s1和s2交叉构成。

lintcode题号——29,难度——hard

样例1:

输入:
s1 = "aabcc"
s2 = "dbbca"
s3 = "aadbbcbcac"
输出:true
解释:s3 是由 s1 与 s2 交叉构成。

样例2:

输入:
s1 = ""
s2 = ""
s3 = "1"
输出:false
解释:s3 不是由 s1 与 s2 交叉构成。

样例3:

输入:
s1 = "aabcc"
s2 = "dbbca"
s3 = "aadbbbaccc"
输出:false
解释:s3 不是由 s1 与 s2 交叉构成。

2 解决方案

2.1 思路

  使用动态规划的方式解,将状态dp[i][j]定义为表示s1的前i个和s2的前j个能不能构成s3的前i+j个,则如果s1的第i字符与s2第j字符与s3的第i+j字符都相等,则只要dp[i - 1][j]dp[i][j - 1]中一个为真,dp[i][j]即可为真;如果只有s1的第i字符与s3的第i+j字符相等,则dp[i - 1][j]为真,dp[i][j]即为真;如果只有s2的第j字符与s3的第i+j字符相等,则dp[i][j - 1]为真,dp[i][j]即为真,理清动态规划的四要素即可解出。

双序列型动态规划:由于将状态定义成前i个字符的状态,所以前0个对象的状态~前i个对象的状态,一共有i+1个状态,所以容器的长度需要增加一位,注意与坐标型动态规划区分。

2.3 时间复杂度

  算法会遍历二维数组,假设s1字符串和s2字符串的长度分别为m、n,则算法的时间复杂度为O(m*n)

2.4 空间复杂度

  使用了二维数组数据结构,容量为m*n,空间复杂度为O(m*n)

3 源码

细节:

  1. 动态规划的四要素:状态、方程、初始化、答案。(四要素在之前的题目数字三角形1中有详细介绍)
  2. 状态:用dp[i][j]表示s1的前i个和s2的前j个能不能构成s3的前i+j个。
  3. 方程:分三种情况,如果s1的第i字符与s2第j字符与s3的第i+j字符都相等,则只要dp[i - 1][j]dp[i][j - 1]中一个为真,dp[i][j]即可为真;如果只有s1的第i字符与s3的第i+j字符相等,则dp[i - 1][j]为真,dp[i][j]即为真;如果只有s2的第j字符与s3的第i+j字符相等,则dp[i][j - 1]为真,dp[i][j]即为真。
  4. 初始化:s1前i个字符能不能独立构成s3的前i个字符,对应dp[i][0];s2的前j个字符能不能独立构成s3的前j个字符,对应dp[0][j]
  5. 答案:s1的所以字符和s2的所有字符能不能构成s3的所有字符,即dp[maxI]dp[maxJ]

C++版本:

/**
* @param s1: A string
* @param s2: A string
* @param s3: A string
* @return: Determine whether s3 is formed by interleaving of s1 and s2
*/
bool isInterleave(string &s1, string &s2, string &s3) {
    // write your code here
    if (s1.empty())
    {
        return s2 == s3;
    }
    if (s2.empty())
    {
        return s1 == s3;
    }

    // 状态:dp[i][j]表示s1的前i个和s2的前j个能不能构成s3的前i+j个
    vector<vector<int>> dp(s1.size() + 1, vector<int>(s2.size() + 1));

    // 初始化:s1前i个字符能不能独立构成s3的前i个字符;s2的前j个字符能不能独立构成s3的前j个字符
    for (int i = 0; i < dp.size(); i++)
    {
        if (s1.substr(0, i) == s3.substr(0, i))
        {
            dp[i][0] = 1;
        }
    }
    for (int j = 0; j < dp.front().size(); j++)
    {
        if (s2.substr(0, j) == s3.substr(0, j))
        {
            dp[0][j] = 1;
        }
    }

    for (int i = 1; i < dp.size(); i++)
    {
        for (int j = 1; j < dp.front().size(); j++)
        {
            // 方程:如果s1的第i字符与s2第j字符与s3的第i+j字符都相等,则只要dp[i - 1][j]、dp[i][j - 1]中一个为真,dp[i][j]即可为真
            if (s1[i - 1] == s3[i + j - 1] && s2[j - 1] == s3[i + j - 1])
            {
                dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
            }
            // 方程:如果只有s1的第i字符与s3的第i+j字符相等,则dp[i - 1][j]为真,dp[i][j]即为真
            else if (s1[i - 1] == s3[i + j - 1])
            {
                dp[i][j] = dp[i - 1][j];
            }
            // 方程:如果只有s2的第j字符与s3的第i+j字符相等,则dp[i][j - 1]为真,dp[i][j]即为真
            else if (s2[j - 1] == s3[i + j - 1])
            {
                dp[i][j] = dp[i][j - 1];
            }
        }
    }

    return dp[dp.size() - 1][dp.front().size() - 1]; // 答案:s1的所以字符和s2的所有字符能不能构成s3的所有字符
}

  1. 数字三角形:https://blog.csdn.net/SeeDoubleU/article/details/124678103 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值