101 不同的子序列(Distinct Subsequences)

文章讲述了如何使用动态规划解决LintCode题118中计算给定字符串S中有多少个子序列与字符串T相同的子序列问题。通过状态转移方程和二维数组表示状态,分析了时间复杂度为O(m*n)和空间复杂度为O(m*n)的过程。
摘要由CSDN通过智能技术生成

1 题目

题目:不同的子序列(Distinct Subsequences)
描述:计算出给定字符串 S 和 T, 字符串S中有多少个子序列字符串和字符串T相同。子序列字符串是原始字符串删除一些(或零个)字符之后得到的字符串, 并且不能改变剩下字符的相对位置。(比如 “ACE” 是 ABCDE 的一个子序列, 而 “AEC” 不是),len(S)<=200,len(T)<=30。

lintcode题号——118,难度——medium

样例1:

输入:
S = "rabbbit"
T = "rabbit"
输出:3
解释:你可以删除 S 中的任意一个 'b', 所以一共有 3 种方式得到 T.

样例2:

输入:
S = "abcd"
T = ""
输出:1
解释:只有删除 S 中的所有字符这一种方式得到 T

2 解决方案

2.1 思路

  使用动态规划的方式解,将状态dp[i][j]定义为表示S的前i字符构成的子串其中与T相同的子序列数,则如果S的第i个字符与T的第j个字符相同,不取第i字符匹配得到结果数与dp[i - 1][j]的情况相同,取第i字符匹配得到结果数与dp[i - 1][j - 1]情况相同,相加即可;如果S的第i个字符与T的第j个字符不同,则不会取第i字符匹配,结果数与dp[i - 1][j]的情况相同,理清动态规划的四要素即可解出。

双序列型动态规划:由于将状态定义成前i个字符的状态,所以前0个对象的状态~前i个对象的状态,一共有i+1个状态,所以容器的长度需要增加一位,注意与坐标型动态规划区分。

2.3 时间复杂度

  算法会遍历二维数组,假设S字符串和T字符串的长度分别为m、n,则算法的时间复杂度为O(m*n)

2.4 空间复杂度

  使用了二维数组数据结构,容量为m*n,空间复杂度为O(m*n)

3 源码

细节:

  1. 动态规划的四要素:状态、方程、初始化、答案。(四要素在之前的题目数字三角形1中有详细介绍)
  2. 状态:用dp[i][j]表示S的前i字符构成的子串其中与T相同的子序列数。
  3. 方程:分两种情况,如果S的第i个字符与T的第j个字符相同,不取第i字符匹配得到结果数=dp[i - 1][j],取第i字符匹配得到结果数=dp[i - 1][j - 1],相加即可;如果S的第i个字符与T的第j个字符不同,则不会取第i字符匹配,结果数=dp[i - 1][j]
  4. 初始化:S的任意字符都能有一种方式构成T的前0字符子串,S前0字符无法构成与T相同的子序列。注意dp[0][0]是1,如果把j循环的初始化放后面会将dp[0][0]覆盖为1。
  5. 答案:S中所有字符与T所有字符相同的子序列数目,即dp[maxI]dp[maxJ]

C++版本:

/**
* @param S: A string
* @param T: A string
* @return: Count the number of distinct subsequences
*/
int numDistinct(string &S, string &T) {
    // write your code here
    if (T.empty())
    {
        return 1;
    }

    // 状态:dp[i][j]表示S的前i字符构成的子串其中与T相同的子序列数
    vector<vector<int>> dp(S.size() + 1, vector<int>(T.size() + 1));

    // 初始化:S的任意字符都能有一种方式构成T的前0字符子串,S前0字符无法构成与T相同的子序列
    for (int j = 0; j < dp.front().size(); j++)
    {
        dp[0][j] = 0;
    }
    for (int i = 0; i < dp.size(); i++) // 注意dp[0][0]是1,如果把j循环的初始化放后面会覆盖dp[0][0]为1
    {
        dp[i][0] = 1;
    }

    for (int i = 1; i < dp.size(); i++)
    {
        for (int j = 1; j < dp.front().size(); j++)
        {
            // 方程:如果S的第i个字符与T的第j个字符相同,不取第i字符匹配得到结果数=dp[i - 1][j],取第i字符匹配得到结果数=dp[i - 1][j - 1],相加即可
            if (S[i - 1] == T[j - 1])
            {
                dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1];
            }
            else // 方程:如果S的第i个字符与T的第j个字符不同,则不会取第i字符匹配,结果数=dp[i - 1][j]
            {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }

    return dp[dp.size() - 1][dp.front().size() - 1]; // 答案:S中所有字符与T所有字符相同的子序列数目
}

  1. 数字三角形:https://blog.csdn.net/SeeDoubleU/article/details/124678103 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值