Pandas中Apply函数加速百倍的技巧!

本文介绍了如何通过Swift加速、向量化处理、类别转换和值类型转化等方式,大幅优化Pandas中的apply函数性能,从最初的18秒缩短到仅需74.9毫秒,为你揭示数据处理中的高效秘诀。
来源:kaggle竞赛宝典

转自:Python大数据分析

大家好,我是小z,也可以叫我阿粥~

虽然目前dask,cudf等包的出现,使得我们的数据处理大大得到了加速,但是并不是每个人都有比较好的gpu,非常多的朋友仍然还在使用pandas工具包,但有时候真的很无奈,pandas的许多问题我们都需要使用apply函数来进行处理,而apply函数是非常慢的,本文我们就介绍如何加速apply函数600倍的技巧。

实验对比

01 Apply(Baseline)

我们以Apply为例,原始的Apply函数处理下面这个问题,需要18.4s的时间。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0, 11, size=(1000000, 5)), columns=('a','b','c','d','e'))
def func(a,b,c,d,e):
    if e == 10:
        return c*d
    elif (e < 10) and (e>=5):
        return c+d
    elif e < 5:
        return a+b
%%time
df['new'] = df.apply(lambda x: func(x['a'], x['b'], x['c'], x['d'], x['e']), axis=1)
CPU times: user 17.9 s, sys: 301 ms, total: 18.2 s
Wall time: 18.4 s

02 Swift加速

因为处理是并行的,所以我们可以使用Swift进行加速,在使用Swift之后,相同的操作在我的机器上可以提升到7.67s。

%%time
# !pip install swifter
import swifter
df['new'] = df.swifter.apply(lambda x : func(x['a'],x['b'],x['c'],x['d'],x['e']),axis=1)
HBox(children=(HTML(value='Dask Apply'), FloatProgress(value=0.0, max=16.0), HTML(value='')))


CPU times: user 329 ms, sys: 240 ms, total: 569 ms
Wall time: 7.67 s

03 向量化

使用Pandas和Numpy的最快方法是将函数向量化。如果我们的操作是可以直接向量化的话,那么我们就尽可能的避免使用:

  • for循环;

  • 列表处理;

  • apply等操作

在将上面的问题转化为下面的处理之后,我们的时间缩短为:421 ms。

%%time
df['new'] = df['c'] * df['d'] #default case e = =10
mask = df['e'] < 10
df.loc[mask,'new'] = df['c'] + df['d']
mask = df['e'] < 5
df.loc[mask,'new'] = df['a'] + df['b']
CPU times: user 134 ms, sys: 149 ms, total: 283 ms
Wall time: 421 ms

04 类别转化+向量化

我们先将上面的类别转化为int16型,再进行相同的向量化操作,发现时间缩短为:116 ms。

for col in ('a','b','c','d'):
    df[col] = df[col].astype(np.int16) 
%%time
df['new'] = df['c'] * df['d'] #default case e = =10
mask = df['e'] < 10
df.loc[mask,'new'] = df['c'] + df['d']
mask = df['e'] < 5
df.loc[mask,'new'] = df['a'] + df['b']
CPU times: user 71.3 ms, sys: 42.5 ms, total: 114 ms
Wall time: 116 ms

05 转化为values处理

在能转化为.values的地方尽可能转化为.values,再进行操作。

  • 此处先转化为.values等价于转化为numpy,这样我们的向量化操作会更加快捷。

于是,上面的操作时间又被缩短为:74.9ms。

%%time
df['new'] = df['c'].values * df['d'].values #default case e = =10
mask = df['e'].values < 10
df.loc[mask,'new'] = df['c'] + df['d']
mask = df['e'].values < 5
df.loc[mask,'new'] = df['a'] + df['b']
CPU times: user 64.5 ms, sys: 12.5 ms, total: 77 ms
Wall time: 74.9 ms

实验汇总

通过上面的一些小的技巧,我们将简单的Apply函数加速了几百倍,具体的:

  • Apply: 18.4 s

  • Apply + Swifter: 7.67 s

  • Pandas vectorizatoin: 421 ms

  • Pandas vectorization + data types: 116 ms

  • Pandas vectorization + values + data types: 74.9ms

作者:杰少,本文大部分内容参考引文

参考文献:Do You Use Apply in Pandas? There is a 600x Faster Way

最后,进入到粉丝福利环节:

送书两本,北京大学出版社的《R语言数据分析与可视化从入门到精通》,理论为辅、实践为主。本书涉及一些必要的理论知识,特别是在数据分析部分,但总体以实践为主,因此几乎每节都有大量的代码,方便读者实践。上手最好的方式就是跟着实现一遍,这本书可以说很硬核了~

b294a2072de7a5ff54b6756029635671.png

参与方式简单粗暴,本文点赞&在看&留言,留言排名第1位、第5位各赠书一本,4月27日22:00开奖~

Pandas中,apply函数是一个用于DataFrame的灵活和强大的函数。它可以在每一列或每一行上应用一个自定义的函数,以便进行各种操作和计算。通过指定axis参数,可以选择对列或行进行操作。apply函数的常见用法包括: - 对每一列或每一行应用一个通用函数,例如np.sum、np.mean等。可以使用lambda函数或自定义函数作为参数,并通过axis参数指定要应用的方向。 - 在每一行上返回一个类似列表的结果。可以使用lambda函数返回一个列表,并通过axis参数指定要应用的方向。结果将作为Series对象返回,每个元素都对应一行。 - 使用result_type参数来控制返回结果的格式。可以选择将类似列表的结果扩展到数据的列,或者将函数返回的序列作为新的列添加到DataFrame中。 - 还可以通过apply函数对整个DataFrame进行操作,例如对各列或各行进行计算求和等。通过指定axis参数为0或1,可以选择对列或行进行操作。 总之,Pandas中的apply函数是一个非常有用的工具,可以方便地对DataFrame进行各种操作和计算。它的灵活性使得我们可以很容易地根据自己的需求进行定制化的处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pandasapply函数简介及用法详解](https://blog.csdn.net/weixin_44852067/article/details/122364306)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值