杭电4993 Revenge of ex-Euclid

http://acm.hdu.edu.cn/showproblem.php?pid=4993

Revenge of ex-Euclid
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1093    Accepted Submission(s): 628


Problem Description
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, which computes, besides the greatest common divisor of integers a and b, the coefficients of Bézout's identity, that is integers x and y such that ax + by = gcd(a, b).
---Wikipedia

Today, ex-Euclid takes revenge on you. You need to calculate how many distinct positive pairs of (x, y) such as ax + by = c for given a, b and c.
 

Input
The first line contains a single integer T, indicating the number of test cases. 

Each test case only contains three integers a, b and c.

[Technical Specification]
1. 1 <= T <= 100
2. 1 <= a, b, c <= 1 000 000
 

Output
For each test case, output the number of valid pairs.
 

Sample Input
2
1 2 3
1 1 4
 

Sample Output
1
3
 

Source
BestCoder Round #9

 

ax + by = c的解的个数(x,y);

 

AC代码:

#include <iostream>
#include <cstdio>
using namespace std;
int a, b, c;
int ans;
int T;
int main() {
    while(cin >> T) {
        while(T--) {
            ans = 0;
            cin >> a >> b >> c;
            for(int i = 1; i * a < c; i++) {
                if((c - a * i) % b == 0) ans++;
            }
            cout << ans << endl;
        }
    }

    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值