题目https://www.luogu.org/problem/P1086
题目描述
鲁宾逊先生有一只宠物猴,名叫多多。这天,他们两个正沿着乡间小路散步,突然发现路边的告示牌上贴着一张小小的纸条:“欢迎免费品尝我种的花生!――熊字”。
鲁宾逊先生和多多都很开心,因为花生正是他们的最爱。在告示牌背后,路边真的有一块花生田,花生植株整齐地排列成矩形网格(如图11)。有经验的多多一眼就能看出,每棵花生植株下的花生有多少。为了训练多多的算术,鲁宾逊先生说:“你先找出花生最多的植株,去采摘它的花生;然后再找出剩下的植株里花生最多的,去采摘它的花生;依此类推,不过你一定要在我限定的时间内回到路边。”
我们假定多多在每个单位时间内,可以做下列四件事情中的一件:
-
从路边跳到最靠近路边(即第一行)的某棵花生植株;
-
从一棵植株跳到前后左右与之相邻的另一棵植株;
-
采摘一棵植株下的花生;
-
从最靠近路边(即第一行)的某棵花生植株跳回路边。
现在给定一块花生田的大小和花生的分布,请问在限定时间内,多多最多可以采到多少个花生?注意可能只有部分植株下面长有花生,假设这些植株下的花生个数各不相同。
例如在图2所示的花生田里,只有位于(2,5),(3,7),(4,2),(5,4)(2,5),(3,7),(4,2),(5,4)的植株下长有花生,个数分别为13,7,15,913,7,15,9。沿着图示的路线,多多在2121个单位时间内,最多可以采到3737个花生。
输入格式
第一行包括三个整数,M,NM,N和KK,用空格隔开;表示花生田的大小为M×N(1≤M,N≤20)M×N(1≤M,N≤20),多多采花生的限定时间为K(0≤K≤1000)K(0≤K≤1000)个单位时间。接下来的MM行,每行包括NN个非负整数,也用空格隔开;第i+1i+1行的第jj个整数Pij(0≤Pij≤500)Pij(0≤Pij≤500)表示花生田里植株(i,j)(i,j)下花生的数目,00表示该植株下没有花生。
输出格式
一个整数,即在限定时间内,多多最多可以采到花生的个数。
输入输出样例
输入 #1复制
6 7 21
0 0 0 0 0 0 0
0 0 0 0 13 0 0
0 0 0 0 0 0 7
0 15 0 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
输出 #1复制
37
输入 #2复制
6 7 20
0 0 0 0 0 0 0
0 0 0 0 13 0 0
0 0 0 0 0 0 7
0 15 0 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
输出 #2复制
28
说明/提示
noip2004普及组第2题
解题思路:
题目看起来很难,很复杂。但实际上是一个贪心。
每次优先选择权值最高的花生采摘,且保证采摘后能够在规定时间内返回即可。
使用结构体数组保存拥有花生的地点值,然后依次保存其需要的时间,这样可以逐次求出到达该花生点所需要的时间是多少,然后依次遍历,找即使加上该花生后也依然可以回到第一排(即其某坐标,具体看自己的定义) <= 规定的时间限度即可。
AC代码:
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN = 1e6+ 10;
struct edge{
int x;
int y;
int p;
int time;
}e[MAXN];
bool cmp(edge a,edge b){
return a.p > b.p;
}
int main() {
int n,m, t;
int cnt;
int sum = 1;
cin >> n >> m >> t;
for(int i = 1; i <=n; i++) {
for(int j = 1; j <= m; j++) {
cin >> cnt;
if(cnt) {
e[sum].x = i;
e[sum].y = j;
e[sum].p = cnt;
sum++;
}
}
}
sort(e + 1,e+sum + 1,cmp);
int tmp;
int ans =0;
for(int i = 1; i <= sum; i++) {
tmp = e[i].x;
if(i == 1) e[i].time = e[i].x+1;
else e[i].time = e[i - 1].time + abs(e[i].x - e[i -1].x) + abs(e[i].y - e[i - 1].y) + 1;
if(e[i].time + tmp <= t) ans +=e[i].p;
}
cout << ans << endl;
return 0;
}