Description
你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作:
命令 | 参数限制 | 内容 |
1 x y A | 1<=x,y<=N,A是正整数 | 将格子x,y里的数字加上A |
2 x1 y1 x2 y2 | 1<=x1<= x2<=N 1<=y1<= y2<=N | 输出x1 y1 x2 y2这个矩形内的数字和 |
3 | 无 | 终止程序 |
Input
输入文件第一行一个正整数N。
接下来每行一个操作。
Output
对于每个2操作,输出一个对应的答案。
Sample Input
4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3
Sample Output
3
5
5
HINT
1<=N<=500000,操作数不超过200000个,内存限制20M。
对于100%的数据,操作1中的A不超过2000。
Source
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CDQ分治+树状数组~
个人理解:CDQ分治是一种将询问与修改记录在同一数组中并排序,再二分求解的算法,用于把询问降维,可以代替树套树。
例如这一道题,每个修改和查询共有横、纵坐标和修改时间三个维度,我们将横坐标排序,纵坐标树状数组维护,时间CDQ分治,即可化简问题。每次对于时间<=mid的修改,加入到树状数组中,然后将时间>mid的询问的ans加上此时的答案,在[l,r]中的所有询问和修改都遍历过后,再将修改恢复原状,把所有询问和修改按照时间分为左右两边,两边再分别遍历。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,c[500001],ans[200001],k,x,y,x1,y1,x2,y2,val,tot,cnt;
struct node{
bool flag;
int x,y,val,poi,id;
}a[800001],b[800001];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0' || ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0' && ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
bool operator < (node u,node v)
{
return u.x==v.x ? u.poi<v.poi:u.x<v.x;
}
void add(int u,int v)
{
for(int i=u;i<=n;i+=(i&(-i))) c[i]+=v;
}
int cal(int u)
{
int now=0;
for(int i=u;i;i-=(i&(-i))) now+=c[i];
return now;
}
void sol(int l,int r)
{
if(l>=r) return;
int mid=l+r>>1,l1=l,l2=mid+1;
for(int i=l;i<=r;i++)
if(!a[i].flag && a[i].poi<=mid) add(a[i].y,a[i].val);
else if(a[i].flag && a[i].poi>mid) ans[a[i].id]+=cal(a[i].y)*a[i].val;
for(int i=l;i<=r;i++) if(!a[i].flag && a[i].poi<=mid) add(a[i].y,-a[i].val);
for(int i=l;i<=r;i++)
if(a[i].poi<=mid) b[l1++]=a[i];
else b[l2++]=a[i];
for(int i=l;i<=r;i++) a[i]=b[i];
sol(l,mid);sol(mid+1,r);
}
int main()
{
n=read();
while(k=read())
{
if(k==3) break;
if(k==1) x=read(),y=read(),val=read(),a[++tot]=(node){0,x,y,val,tot,0};
else
{
x1=read()-1;y1=read()-1;x2=read();y2=read();++cnt;
a[++tot]=(node){1,x1,y1,1,tot,cnt};
a[++tot]=(node){1,x1,y2,-1,tot,cnt};
a[++tot]=(node){1,x2,y1,-1,tot,cnt};
a[++tot]=(node){1,x2,y2,1,tot,cnt};
}
}
sort(a+1,a+tot+1);
sol(1,tot);
for(int i=1;i<=cnt;i++) printf("%d\n",ans[i]);
return 0;
}