51nod 1355 斐波那契的最小公倍数

99 篇文章 0 订阅
61 篇文章 0 订阅

斐波那契数列定义如下:

F(0) = 0 F(1) = 1
F(n) = F(n-1) + F(n-2)

给出n个正整数a1, a2,...... an,求对应的斐波那契数的最小公倍数,由于数字很大,输出Mod 1000000007的结果即可。
例如:1 3 6 9, 对应的斐波那契数为:1 2 8 34, 他们的最小公倍数为136。
Input
第1行:1个数N,表示数字的数量(2 <= N <= 50000)。
第2 至 N + 1行:每行1个数,对应ai。(1 <= ai <= 1000000)。
Output
输出Lcm(F(a1), F(a2) ...... F(an)) Mod 1000000007的结果。
Input示例
4
1
3
6
9
Output示例
136
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

神奇数论~

题解见知乎:https://www.zhihu.com/question/61218881~


#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define ll long long

const int mod=1000000007;

int n,x,now,f[1000001],g[1000001],maxx,ans;
bool b[1000001];

int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0' || ch>'9') {if(ch=='-') f=-1;ch=getchar();}
	while(ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
	return x*f;
}

int mi(int u,int v)
{
	int now=1;
	for(;v;v>>=1,u=(ll)u*u%mod) if(v&1) now=(ll)now*u%mod;
	return now;
}

int main()
{
	n=read();ans=1;
	for(int i=n;i;i--) x=read(),maxx=max(maxx,x),b[x]=1;n=maxx;
	g[1]=f[1]=1;g[2]=f[2]=1;
	for(int i=3;i<=n;i++) g[i]=f[i]=(f[i-1]+f[i-2])%mod;
	for(int i=1;i<=n;i++)
	{
		now=mi(g[i],mod-2);
		for(int j=i+i;j<=n;j+=i) g[j]=(ll)g[j]*now%mod;
	}
	for(int i=1;i<=n;i++)
	  for(int j=i;j<=n;j+=i)
	    if(b[j])
	    {
	    	ans=(ll)ans*g[i]%mod;break;
	    }
	printf("%d\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值