斐波那契数列定义如下:
F(0) = 0 F(1) = 1
F(n) = F(n-1) + F(n-2)
F(n) = F(n-1) + F(n-2)
给出n个正整数a1, a2,...... an,求对应的斐波那契数的最小公倍数,由于数字很大,输出Mod 1000000007的结果即可。
例如:1 3 6 9, 对应的斐波那契数为:1 2 8 34, 他们的最小公倍数为136。
Input
第1行:1个数N,表示数字的数量(2 <= N <= 50000)。 第2 至 N + 1行:每行1个数,对应ai。(1 <= ai <= 1000000)。
Output
输出Lcm(F(a1), F(a2) ...... F(an)) Mod 1000000007的结果。
Input示例
4 1 3 6 9
Output示例
136
神奇数论~
题解见知乎:https://www.zhihu.com/question/61218881~
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define ll long long
const int mod=1000000007;
int n,x,now,f[1000001],g[1000001],maxx,ans;
bool b[1000001];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0' || ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int mi(int u,int v)
{
int now=1;
for(;v;v>>=1,u=(ll)u*u%mod) if(v&1) now=(ll)now*u%mod;
return now;
}
int main()
{
n=read();ans=1;
for(int i=n;i;i--) x=read(),maxx=max(maxx,x),b[x]=1;n=maxx;
g[1]=f[1]=1;g[2]=f[2]=1;
for(int i=3;i<=n;i++) g[i]=f[i]=(f[i-1]+f[i-2])%mod;
for(int i=1;i<=n;i++)
{
now=mi(g[i],mod-2);
for(int j=i+i;j<=n;j+=i) g[j]=(ll)g[j]*now%mod;
}
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j+=i)
if(b[j])
{
ans=(ll)ans*g[i]%mod;break;
}
printf("%d\n",ans);
return 0;
}