1、 传统压缩VS压缩感知
● 传统的视音频数据压缩理论,为了不失真的还原原始信号,都是根据奈奎斯特信号处理理论,采样频率不低于信号最高带宽的两倍,然后再根据采样数据本身的特性,通过压缩算法发掘并剔除冗余数据,从而达到数据压缩的目的。
传统的信号采样压缩过程可如下图表示:
●相比传统的视音频数据压缩理论,压缩感知的进步之处在于实现采样的同时完成压缩,从而省去了采集全部数据再去冗余的麻烦,避免了海量的数据存储和要求过高的硬件设备。
压缩感知理论发现,如果信号是稀疏信号或者在某个变换域可稀疏表示,则可以打破传统香农奈奎斯特定律的约束,采用低于两倍的信号最高的方式进行信号采样,然后接收端使用合适的重构算法能够以很高的概率精准恢复出原始信号。
压缩感知过程可如下图表示:
2、压缩感知用于信道估计
在当前对数据传输需求日益增大的形势下,频谱资源极其宝贵,如果可以用较少的导频数量就能准确的恢复原始信号,同时保证信道估计的实时性,将较大的提高通信系统的频谱利用效率。由于实际无线信道通常具有稀疏性,而压缩感知正好是在稀疏条件下的理论研究,故在通信理论的信道估计领域,压缩感知有很好的应用前景和研究价值。