动手学深度学习Pytorch版Task05

卷积神经网络基础

二维卷积层

二维互相关运算

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。
在这里插入图片描述
二维卷积层



    
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super(Conv2D, self).__init__()
        self.weight = nn.Parameter(torch.randn(kernel_size))
        self.bias = nn.Parameter(torch.randn(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias


    
X = torch.ones(6, 8)
Y = torch.zeros(6, 7)
X[:, 2: 6] = 0
Y[:, 1] = 1
Y[:, 5] = -1
print(X)
print(Y)

互相关运算与卷积运算
卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。
特征图与感受野
二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xx的感受野(receptive field)。
以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×22×2的输出记为YY,将YY与另一个形状为2×22×2的核数组做互相关运算,输出单个元素zz。那么,zz在YY上的感受野包括YY的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。
填充和步幅
填充
填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
在这里插入图片描述
图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算
如果原输入的高和宽是nhnh和nwnw,卷积核的高和宽是khkh和kwkw,在高的两侧一共填充phph行,在宽的两侧一共填充pwpw列,则输出形状为:
(nh+ph−kh+1)×(nw+pw−kw+1)(nh+ph−kh+1)×(nw+pw−kw+1)我们在卷积神经网络中使用奇数高宽的核,比如3×33×3,5×55×5的卷积核,对于高度(或宽度)为大小为2k+12k+1的核,令步幅为1,在高(或宽)两侧选择大小为kk的填充,便可保持输入与输出尺寸相同。

多输入通道和多输出通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hh和ww(像素),那么它可以表示为一个3×h×w3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。
多输入通道
卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。
在这里插入图片描述
图4 含2个输入通道的互相关计算
假设输入数据的通道数为cici,卷积核形状为kh×kwkh×kw,我们为每个输入通道各分配一个形状为kh×kwkh×kw的核数组,将cici个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把cici个核数组在通道维上连结,即得到一个形状为ci×kh×kwci×kh×kw的卷积核。
多输出通道
卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为cici和coco,高和宽分别为khkh和kwkw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kwci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kwco×ci×kh×kw。
对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kwci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kwci×kh×kw的核数组,不同的核数组提取的是不同的特征。
1x1卷积层

池化

二维池化层
池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×22×2的最大池化。
在这里插入图片描述
图6 池化窗口形状为 2 x 2 的最大池化
二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×qp×q的池化层称为p×qp×q池化层,其中的池化运算叫作p×qp×q池化。
池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。
在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。
池化层的简洁实现
我们使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:

kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is kernel_size
padding – implicit zero padding to be added on both sides

forward函数的参数为一个四维张量,形状为(N,C,Hin,Win)(N,C,Hin,Win),返回值也是一个四维张量,形状为(N,C,Hout,Wout)(N,C,Hout,Wout),其中NN是批量大小,C,H,WC,H,W分别表示通道数、高度、宽度。

X = torch.arange(32, dtype=torch.float32).view(1, 2, 4, 4)
pool2d = nn.MaxPool2d(kernel_size=3, padding=1, stride=(2, 1))
Y = pool2d(X)
print(X)
print(Y)

Lenet

1.模型
在这里插入图片描述
卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。
卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。
全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
下面我们通过Sequential类来实现LeNet模型:

#import
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
import torch
import torch.nn as nn
import torch.optim as optim
import time
:

    
#net
class Flatten(torch.nn.Module):  #展平操作
    def forward(self, x):
        return x.view(x.shape[0], -1)

class Reshape(torch.nn.Module): #将图像大小重定型
    def forward(self, x):
        return x.view(-1,1,28,28)      #(B x C x H x W)
    
net = torch.nn.Sequential(     #Lelet                                                  
    Reshape(),
    nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), #b*1*28*28  =>b*6*28*28
    nn.Sigmoid(),                                                       
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*6*28*28  =>b*6*14*14
    nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),           #b*6*14*14  =>b*16*10*10
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*16*10*10  => b*16*5*5
    Flatten(),                                                          #b*16*5*5   => b*400
    nn.Linear(in_features=16*5*5, out_features=120),
    nn.Sigmoid(),
    nn.Linear(120, 84),
    nn.Sigmoid(),
    nn.Linear(84, 10)
)
#print
X = torch.randn(size=(1,1,28,28), dtype = torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
为了在GPU上搭建动手深度学习pytorch环境,你需要按照以下步骤进行操作。 首先,你需要安装Anaconda来管理你的Python环境。你可以从官方网站 https://www.anaconda.com/ 下载适用于你操作系统的Anaconda安装程序。安装完成后,你可以使用conda命令创建一个新的环境。 接下来,你需要安装CUDA。CUDA是用于支持GPU计算的NVIDIA的并行计算平台和API模型。你可以从NVIDIA的官方网站下载适用于你的显卡型号的CUDA安装程序进行安装。 然后,你需要安装CUDNN。CUDNN是一个针对深度神经网络加速的GPU库。你可以从NVIDIA的开发者网站下载CUDNN并按照安装说明进行安装。 接下来,你可以使用conda命令来安装pytorch。你可以复制以下命令,在新建的环境中输入: ``` conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 安装完成后,你可以在命令行中输入python进入Python解释器环境,并导入torch模块来测试pytorch的安装。你可以使用以下代码进行测试: ```python import torch from __future__ import print_function x = torch.rand(5, 3) print(x) print(torch.cuda.is_available()) # 测试CUDA是否可用 ``` 这样,你就成功搭建了动手深度学习pytorch环境,并且可以在GPU上进行深度学习任务了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [01 动手深度学习-配置环境pytorch](https://blog.csdn.net/qq_44653420/article/details/123883400)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值