8.6 A - 最短路

                                          A - 最短路


在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。 
输入保证至少存在1条商店到赛场的路线。 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
Sample Output
3
2

简单最短路径水题....


Floyd算法:

#include<stdio.h>
#include<string.h>
int a[1200][1200];
int main()
{
	int i,j,k,m,n,max=1e9,t1,t2,t3;
	while(scanf("%d%d",&n,&m),m+n!=0)
	{
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				if(i==j)
				{
					a[i][j]=0;
				}
				else
				{
					a[i][j]=max;
				}
			}
		}//初始化
		
		for(i=1;i<=m;i++)
		{
			scanf("%d%d%d",&t1,&t2,&t3);
			if(t3<a[t1][t2])//预防出现重复路径
			{
				a[t1][t2]=t3;
				a[t2][t1]=t3;
			}	
		}
		
		for(k=1;k<=n;k++)//核心算法
		{
			for(i=1;i<=n;i++)
			{
				for(j=1;j<=n;j++)
				{
					if(a[i][j]>a[i][k]+a[k][j])
					{
						a[i][j]=a[i][k]+a[k][j];
					}
				}
			}
		}
		printf("%d\n",a[1][n]);//以起点和重点为坐标
	}
	return 0;
}

Dijkstra算法:


#include<stdio.h>
#include<string.h>
int a[2000][2000],book[2000],d[2000];
int main()
{
	int i,j,k,m,n,c,max=1e9,min,sum;
	int t1,t2,t3;
	while(scanf("%d%d",&n,&m),m+n!=0)
	{
		memset(a,0,sizeof(a));
		memset(d,0,sizeof(d));
		memset(book,0,sizeof(book));
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				if(i==j)
				{
					a[i][j]=0;
				}
				else
				{
					a[i][j]=max;
				}
			}
		}//初始化
		for(i=1;i<=m;i++)
		{
			scanf("%d%d%d",&t1,&t2,&t3);
			a[t1][t2]=t3;//正反方向储存
			a[t2][t1]=t3;
		}
		c=0;
		sum=0;
		for(i=1;i<=n;i++)
		{
			d[i]=a[1][i];
		}
		book[1]=1;
		while(c<n)//算法核心
		{
			min=max;
			for(i=1;i<=n;i++)
			{
				if(book[i]==0&&d[i]<min)
				{
					min=d[i];
					j=i;
				}
				
			}
			sum+=d[j];
			book[j]=1;
			c++;
			for(i=1;i<=n;i++)
			{
				if(book[i]==0&&a[j][i]+d[j]<d[i])
				{
					d[i]=a[j][i]+d[j];
				}
			}
			
		}
		printf("%d\n",d[n]);
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值