2-SAT问题笔记+POJ3648例题题解+3道例题

POJ3648题目链接

2-SAT简介

要解释2-SAT问题可以借用上面这道题,一个人只能坐在左侧或是右侧,如果一个人坐在左侧,那么就可以推出这个人不坐在右侧。题目中还有一个限制条件就是丈夫和妻子不能坐在同一侧,因此丈夫坐在左侧可以推出妻子坐在右侧,像这种非左即右,只有一个对立面的问题就是2-SAT问题。
解决这种题的做法就是建图,把各种状态看成一个结点,比如丈夫坐在左侧是一个结点,丈夫坐在右侧又是一个结点,这道题有n对夫妇,那么就有4n个结点。如果一种状态可以推得另一种状态成立,那么就在两个状态之间连一条有向边,表示这种状态可以到达另一种状态。
有向图又涉及到强连通分量的判断,这里不做介绍。在强连通分量里的所有状态,只要有一个被选中,那么其他状态也都要被选中。如果出现了一个人既在左侧又在右侧的情况,说明没有符合的方案(因为一个人在两侧的情况中必须要选一种),或是妻子和丈夫在同一侧,也是不行的(但是这种情况并不代表没有符合的方案,因为妻子和丈夫还可以在另一侧,只是当前的情况是矛盾的,需要舍弃)。
解决POJ3648这道题就可以在建图之后从一个人在左侧的状态出发进行dfs,如果有矛盾出现,就从这个人在右侧的情况进行dfs,如果还有矛盾那就结束。
建图的细节请参考代码注释

#include <iostream>
#include <string.h>
#include <vector>
#define maxn 10001
using namespace std;

vector<int> g[maxn * 2];
bool vis[maxn * 2];
int top = 0, sta[maxn * 2];
inline void addEdge(int u, int dir1, int v, int dir2)
{
    //i*2+1表示第i对的丈夫,i*2表示第i对的妻子
    //在此基础上*2表示在左,*2+1表示在右
    u = u * 2 + dir1;
    v = v * 2 + dir2;
    g[u].push_back(v);
}

void init(int n)
{
    for (int i = 0; i < 2 * n; i++)
        g[i].clear();
    memset(vis, false, sizeof(vis));
    addEdge(0, 1, 0, 0); //新娘在右->新娘在左,矛盾,因此可以保证新娘在左
    addEdge(1, 0, 1, 1); //同理保证新郎在右
    for (int i = 2; i < n; i += 2)
    {
        //增加其他夫妻之间的关系
        addEdge(i, 0, i + 1, 1);
        addEdge(i, 1, i + 1, 0);
        addEdge(i + 1, 0, i, 1);
        addEdge(i + 1, 1, i, 0);
    }
}
bool dfs(int x)
{
    //1^1=0,0^1=1,表示dfs中遇到了一个人既在左侧又在右侧的情况
    if (vis[x ^ 1]) return false;
    if (vis[x]) return true;
    vis[x] = true;
    sta[top++] = x;
    for (int i = 0; i < g[x].size(); i++)
        if (!dfs(g[x][i])) return false;
    return true;
}

bool check(int n)
{
    n <<= 2;
    for (int i = 0; i < n; i += 2)
    {
        if (!vis[i] && !vis[i + 1])
        {
            top = 0;
            if (!dfs(i)) //在左侧的情况出现了矛盾
            {
            	//需要先将这一轮中访问过的点置为未访问状态
                while (top > 0)
                    vis[sta[--top]] = false;
                //尝试在右侧的情况,如果还有矛盾就说明没有符合的方案
                if (!dfs(i + 1)) return false;
            }
        }
    }
    return true;
}

int main()
{
    int n, m;
    while (scanf("%d%d", &n, &m) != EOF && (n + m))
    {
        init(n * 2);
        int u, v;
        char c1, c2;
        while (m--)
        {
            scanf("%d%c%d%c", &u, &c1, &v, &c2);
            //i*2+1表示第i对的新郎,i*2表示第i对的新娘
            u *= 2;
            v *= 2;
            if (c1 == 'h') u++;
            if (c2 == 'h') v++;
            //添加限制条件,有关系的两个人可以同时在新娘那侧,但不能同时在新郎那侧
            addEdge(u, 1, v, 0);
            addEdge(v, 1, u, 0);
        }
        if (!check(n))
            printf("bad luck\n");
        else
        {
            n *= 2;
            //输出位于新娘那一侧的人
            for (int i = 2; i < n; i += 2)
            {
                if (vis[i << 1])
                    printf("%dw ", i / 2);
                else
                    printf("%dh ", i / 2);
            }
            printf("\n");
        }
    }
    return 0;
}

其他例题

POJ2296
POJ2296题解

POJ2723
POJ2723题解

POJ2749
POJ2749题解

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值