POJ3368 Frequent values ST表 优化查询

这题问的是给定一个区间,给出这个区间中出现最频繁的那个数的出现次数,并且给定的是一个升序序列。
在用ST表预处理时会遇到一个问题,如果一个区间中出现次数最多的数位于两侧该怎么办?解决方法是将一个查询区间的左侧相同的数全部单独计算,然后取剩余区间的RMQ即可。为了正确的查询,F[i][0]保存的是a[i]在[0,i]区间里出现的次数。

AC代码的思路是按照书上来写的,但是在一些极限的数据下还是容易超时,比如所有的数字都是一样的,那么每次统计a[l]出现的次数时都要将此区间完整的遍历一遍,查询复杂度为O(n)。(但是poj上没有这样的数据,因此书上的方法还是过了)。
有一个优化的方法是将当前数字的右端位置进行预处理,这样就不用遍历整个区间了。

下面分别给出优化前代码和优化后代码:

//没有优化的代码
#include <algorithm>
#include <cmath>
#include <cstdio>
#define inf 0x3f3f3f3f
const int N = 1e5 + 5;
using namespace std;

int n, q, a[N], lg2[N], f[N][20];

void init()
{
    //为了预处理方便 先将lg2[0]赋值为-1
    lg2[0] = -1;
    for (int i = 1; i <= n; i++)
    {
        //预处理log2的一种方法:如果i不是2的次幂,那么i & (i-1) 一定不为0(1除外)
        lg2[i] = (i & (i - 1)) ? lg2[i - 1] : lg2[i - 1] + 1;
        if (a[i] == a[i - 1])
            f[i][0] = f[i - 1][0] + 1;
        else
            f[i][0] = 1;
    }
    //预处理完成将lg2[0]的值恢复0
    lg2[0] = 0;
    for (int i = 1; i < 20; i++)
    {
        int len = pow(2, i - 1);
        if (len * 2 > n) break;
        for (int j = n - len * 2 + 1; j >= 1; j--)
            f[j][i] = max(f[j][i - 1], f[j + len][i - 1]);
    }
}
int rmq(int l, int r)
{
    if (r == l) return 1;
    int t = l;
    //统计a[l]在该区间出现的次数
    while (a[t] == a[t - 1] && t <= r) t++;
    if (t > r) return t - l;
    return max(t - l, max(f[t][lg2[r - t]], f[r - (1 << lg2[r - t]) + 1][lg2[r - t]]));
}

int main()
{
    while (1)
    {
        scanf("%d", &n);
        if (n == 0) break;
        scanf("%d", &q);
        int l, r;
        for (int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        a[0] = inf;
        init();
        while (q--)
        {
            scanf("%d%d", &l, &r);
            printf("%d\n", rmq(l, r));
        }
    }
    return 0;
}

优化后的代码在poj的测试下差距不大,但是在极限数据下也能保持O(1)的查询复杂度

//优化后代码
#include <algorithm>
#include <cmath>
#include <cstdio>
#define inf 0x3f3f3f3f
#define fre(f) freopen(f ".in", "r", stdin), freopen(f ".out", "w", stdout)
const int N = 1e5 + 5;
using namespace std;

int n, q, a[N], lg2[N], f[N][20], rr[N]; //rr[i]表示a[i]这个数出现的最右端位置

void init()
{
    a[0] = a[n + 1] = inf;
    //为了预处理方便 先将lg2[0]赋值为-1
    lg2[0] = -1;
    for (int i = 1; i <= n; i++)
    {
        //预处理log2的一种方法:如果i不是2的次幂,那么i & (i-1) 一定不为0(1除外)
        lg2[i] = (i & (i - 1)) ? lg2[i - 1] : lg2[i - 1] + 1;
        if (a[i] == a[i - 1])
            f[i][0] = f[i - 1][0] + 1;
        else
            f[i][0] = 1;
    }
    //预处理完成将lg2[0]的值恢复0
    lg2[0] = 0;
    for (int i = 1; i < 20; i++)
    {
        int len = pow(2, i - 1);
        if (len * 2 > n) break;
        for (int j = n - len * 2 + 1; j >= 1; j--)
            f[j][i] = max(f[j][i - 1], f[j + len][i - 1]);
    }
    //预处理rr数组
    for (int i = n; i >= 1; i--)
    {
        if (a[i] == a[i + 1])
            rr[i] = rr[i + 1];
        else
            rr[i] = i;
    }
}
int rmq(int l, int r)
{
    if (r == l) return 1;
    int t = min(r, rr[l]) + 1;
    if (t > r) return t - l;
    return max(t - l, max(f[t][lg2[r - t]], f[r - (1 << lg2[r - t]) + 1][lg2[r - t]]));
}

int main()
{
    // fre("poj3368");
    while (1)
    {
        scanf("%d", &n);
        if (n == 0) break;
        scanf("%d", &q);
        int l, r;
        for (int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        init();
        while (q--)
        {
            scanf("%d%d", &l, &r);
            printf("%d\n", rmq(l, r));
        }
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值